29,854 research outputs found

    Practical Certificateless Aggregate Signatures From Bilinear Maps

    Get PDF
    Aggregate signature is a digital signature with a striking property that anyone can aggregate n individual signatures on n different messages which are signed by n distinct signers, into a single compact signature to reduce computational and storage costs. In this work, two practical certificateless aggregate signature schemes are proposed from bilinear maps. The first scheme CAS-1 reduces the costs of communication and signer-side computation but trades off the storage, while CAS-2 minimizes the storage but sacrifices the communication costs. One can choose either of the schemes by consideration of the application requirement. Compare with ID-based schemes, our schemes do not entail public key certificates as well and achieve the trust level 3, which imply the frauds of the authority are detectable. Both of the schemes are proven secure in the random oracle model by assuming the intractability of the computational Diffie-Hellman problem over the groups with bilinear maps, where the forking lemma technique is avoided

    Effects of relative orientation of the molecules on electron transport in molecular devices

    Full text link
    Effects of relative orientation of the molecules on electron transport in molecular devices are studied by non-equilibrium Green's function method based on density functional theory. In particular, two molecular devices, with the planer Au7_{7} and Ag3_{3} clusters sandwiched between the Al(100) electrodes are studied. In each device, two typical configurations with the clusters parallel and vertical to the electrodes are considered. It is found that the relative orientation affects the transport properties of these two devices completely differently. In the Al(100)-Au7_7-Al(100) device, the conductance and the current of the parallel configuration are much larger than those in the vertical configuration, while in the Al(100)-Ag3_{3}-Al(100) device, an opposite conclusion is obtained

    Spin correlated interferometry for polarized and unpolarized photons on a beam splitter

    Get PDF
    Spin interferometry of the 4th order for independent polarized as well as unpolarized photons arriving simultaneously at a beam splitter and exhibiting spin correlation while leaving it, is formulated and discussed in the quantum approach. Beam splitter is recognized as a source of genuine singlet photon states. Also, typical nonclassical beating between photons taking part in the interference of the 4th order is given a polarization dependent explanation.Comment: RevTeX, 19 pages, 1 ps figure, author web page at http://m3k.grad.hr/pavici

    Four dual AGN candidates observed with the VLBA

    Full text link
    According to hierarchical structure formation models, merging galaxies are expected to be seen in different stages of their coalescence. However, currently there are no straightforward observational methods neither to select nor to confirm a large number of dual active galactic nuclei (AGN) candidates. Most attempts involve the better understanding of double-peaked narrow emission line sources, to distinguish the objects where the emission lines originate from narrow-line kinematics or jet-driven outflows from those which might harbour dual AGN. We observed four such candidate sources with the Very Long Baseline Array (VLBA) at 1.5 GHz with \sim 10 milli-arcsecond angular resolution where spectral profiles of AGN optical emission suggested the existence of dual AGN. In SDSS J210449.13-000919.1 and SDSS J23044.82-093345.3, the radio structures are aligned with the optical emission features, thus the double-peaked emission lines might be the results of jet-driven outflows. In the third detected source SDSS J115523.74+150756.9, the radio structure is less extended and oriented nearly perpendicular to the position angle derived from optical spectroscopy. The fourth source remained undetected with the VLBA but it has been imaged with the Very Large Array at arcsec resolution a few months before our observations, suggesting the existence of extended radio structure. In none of the four sources did we detect two radio-emitting cores, a convincing signature of duality.Comment: 35 pages, 3 figures, 2 tables, accepted for publication in Ap

    Exact solution of gyration radius of individual's trajectory for a simplified human mobility model

    Full text link
    Gyration radius of individual's trajectory plays a key role in quantifying human mobility patterns. Of particular interests, empirical analyses suggest that the growth of gyration radius is slow versus time except the very early stage and may eventually arrive to a steady value. However, up to now, the underlying mechanism leading to such a possibly steady value has not been well understood. In this Letter, we propose a simplified human mobility model to simulate individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that individual has constant travel speed and inferior limit of time at home and work, we prove that the daily moving area of an individual is an ellipse, and finally get an exact solution of the gyration radius. The analytical solution well captures the empirical observation reported in [M. C. Gonz`alez et al., Nature, 453 (2008) 779]. We also find that, in spite of the heterogeneous displacement distribution in the population level, individuals in our model have characteristic displacements, indicating a completely different mechanism to the one proposed by Song et al. [Nat. Phys. 6 (2010) 818].Comment: 4 pages, 4 figure

    Quakes in Solid Quark Stars

    Full text link
    A starquake mechanism for pulsar glitches is developed in the solid quark star model. It is found that the general glitch natures (i.e., the glitch amplitudes and the time intervals) could be reproduced if solid quark matter, with high baryon density but low temperature, has properties of shear modulus \mu = 10^{30~34} erg/cm^3 and critical stress \sigma_c = 10^{18~24} erg/cm^3. The post-glitch behavior may represent a kind of damped oscillations.Comment: 11 pages, 4 figures (but Fig.3 is lost), a complete version can be obtained by http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.htm, a new version to be published on Astroparticle Physic

    Luminous Infrared Galaxies in the Local Universe

    Full text link
    We study the morphology and star formation properties of 159 local luminous infrared galaxy (LIRG) using multi-color images from Data Release 2 (DR2) of the Sloan Digital Sky Survey (SDSS). The LIRGs are selected from a cross-correlation analysis between the IRAS survey and SDSS. They are all brighter than 15.9 mag in the r-band and below redshift ~ 0.1, and so can be reliably classified morphologically. We find that the fractions of interacting/merging and spiral galaxies are ~ 48% and ~ 40% respectively. Our results complement and confirm the decline (increase) in the fraction of spiral (interacting/merging) galaxies from z ~1 to z ~ 0.1, as found by Melbourne, Koo & Le Floc'h (2005). About 75% of spiral galaxies in the local LIRGs are barred, indicating that bars may play an important role in triggering star formation rates > 20 M_{sun}/yr in the local universe. Compared with high redshift LIRGs, local LIRGs have lower specific star formation rates, smaller cold gas fractions and a narrower range of stellar masses. Local LIRGs appear to be either merging galaxies forming intermediate mass ellipticals or spiral galaxies undergoing high star formation activities regulated by bars.Comment: 22 pages, 5 figures, accepted for publication in ApJ, title changed, typos corrected,major revisions following referee's comments,updated reference

    Measuring Dark Energy with Gamma-Ray Bursts and Other Cosmological Probes

    Full text link
    It has been widely shown that the cosmological parameters and dark energy can be constrained by using data from type-Ia supernovae (SNe Ia), the cosmic microwave background (CMB) anisotropy, the baryon acoustic oscillation (BAO) peak from Sloan Digital Sky Survey (SDSS), the X-ray gas mass fraction in clusters, and the linear growth rate of perturbations at z=0.15 as obtained from the 2dF Galaxy Redshift Survey. Recently, gamma-ray bursts (GRBs) have also been argued to be promising standard candles for cosmography. In this paper, we present constraints on the cosmological parameters and dark energy by combining a recent GRB sample including 69 events with the other cosmological probes. First, we find that for the LambdaCDM cosmology this combination makes the constraints stringent and the best fit is close to the flat universe. Second, we fit the flat Cardassian expansion model and find that this model is consistent with the LambdaCDM cosmology. Third, we present constraints on several two-parameter dark energy models and find that these models are also consistent with the LambdaCDM cosmology. Finally, we reconstruct the dark energy equation-of-state parameter w(z) and the deceleration parameter q(z). We see that the acceleration could have started at a redshift from z_T=0.40_{-0.08}^{+0.14} to z_T=0.65_{-0.05}^{+0.10}. This difference in the transition redshift is due to different dark energy models that we adopt. The most stringent constraint on w(z) lies in the redshift range z\sim 0.3-0.6.Comment: 28 pages, 13 figures, accepted for publication in ApJ. One reference added, one minor change in the final paragraph of section
    corecore