1,688 research outputs found

    Developed turbulence: From full simulations to full mode reductions

    Get PDF
    Developed Navier-Stokes turbulence is simulated with varying wavevector mode reductions. The flatness and the skewness of the velocity derivative depend on the degree of mode reduction. They show a crossover towards the value of the full numerical simulation when the viscous subrange starts to be resolved. The intermittency corrections of the scaling exponents of the pth order velocity structure functions seem to depend mainly on the proper resolution of the inertial subrange. Universal scaling properties (i.e., independent of the degree of mode reduction) are found for the relative scaling exponents rho which were recently defined by Benzi et al.Comment: 4 pages, 5 eps-figures, replaces version from August 5th, 199

    Universal statistics of non-linear energy transfer in turbulent models

    Full text link
    A class of shell models for turbulent energy transfer at varying the inter-shell separation, λ\lambda, is investigated. Intermittent corrections in the continuous limit of infinitely close shells (λ1\lambda \rightarrow 1) have been measured. Although the model becomes, in this limit, non-intermittent, we found universal aspects of the velocity statistics which can be interpreted in the framework of log-poisson distributions, as proposed by She and Waymire (1995, Phys. Rev. Lett. 74, 262). We suggest that non-universal aspects of intermittency can be adsorbed in the parameters describing statistics and properties of the most singular structure. On the other hand, universal aspects can be found by looking at corrections to the monofractal scaling of the most singular structure. Connections with similar results reported in other shell models investigations and in real turbulent flows are discussed.Comment: 4 pages, 2 figures available upon request to [email protected]

    Bifractality of the Devil's staircase appearing in the Burgers equation with Brownian initial velocity

    Full text link
    It is shown that the inverse Lagrangian map for the solution of the Burgers equation (in the inviscid limit) with Brownian initial velocity presents a bifractality (phase transition) similar to that of the Devil's staircase for the standard triadic Cantor set. Both heuristic and rigorous derivations are given. It is explained why artifacts can easily mask this phenomenon in numerical simulations.Comment: 12 pages, LaTe

    A new scaling property of turbulent flows

    Full text link
    We discuss a possible theoretical interpretation of the self scaling property of turbulent flows (Extended Self Similarity). Our interpretation predicts that, even in cases when ESS is not observed, a generalized self scaling, must be observed. This prediction is checked on a number of laboratory experiments and direct numerical simulations.Comment: Plain Latex, 1 figure available upon request to [email protected]

    Turbulence and Multiscaling in the Randomly Forced Navier Stokes Equation

    Get PDF
    We present an extensive pseudospectral study of the randomly forced Navier-Stokes equation (RFNSE) stirred by a stochastic force with zero mean and a variance k4dy\sim k^{4-d-y}, where kk is the wavevector and the dimension d=3d = 3. We present the first evidence for multiscaling of velocity structure functions in this model for y4y \geq 4. We extract the multiscaling exponent ratios ζp/ζ2\zeta_p/\zeta_2 by using extended self similarity (ESS), examine their dependence on yy, and show that, if y=4y = 4, they are in agreement with those obtained for the deterministically forced Navier-Stokes equation (3d3dNSE). We also show that well-defined vortex filaments, which appear clearly in studies of the 3d3dNSE, are absent in the RFNSE.Comment: 4 pages (revtex), 6 figures (postscript

    Circulation Statistics in Three-Dimensional Turbulent Flows

    Full text link
    We study the large λ\lambda limit of the loop-dependent characteristic functional Z(λ)=Z(\lambda)=, related to the probability density function (PDF) of the circulation around a closed contour cc. The analysis is carried out in the framework of the Martin-Siggia-Rose field theory formulation of the turbulence problem, by means of the saddle-point technique. Axisymmetric instantons, labelled by the component σzz\sigma_{zz} of the strain field -- a partially annealed variable in our formalism -- are obtained for a circular loop in the xyxy plane, with radius defined in the inertial range. Fluctuations of the velocity field around the saddle-point solutions are relevant, leading to the lorentzian asymptotic behavior Z(λ)1/λ2Z(\lambda) \sim 1/{\lambda^2}. The O(1/λ4){\cal O}(1 / {\lambda^4}) subleading correction and the asymmetry between right and left PDF tails due to parity breaking mechanisms are also investigated.Comment: Computations are discussed in a more detailed way; accepted for publication in Physical Review

    Finite size corrections to scaling in high Reynolds number turbulence

    Get PDF
    We study analytically and numerically the corrections to scaling in turbulence which arise due to the finite ratio of the outer scale LL of turbulence to the viscous scale η\eta, i.e., they are due to finite size effects as anisotropic forcing or boundary conditions at large scales. We find that the deviations \dzm from the classical Kolmogorov scaling ζm=m/3\zeta_m = m/3 of the velocity moments \langle |\u(\k)|^m\rangle \propto k^{-\zeta_m} decrease like δζm(Re)=cmRe3/10\delta\zeta_m (Re) =c_m Re^{-3/10}. Our numerics employ a reduced wave vector set approximation for which the small scale structures are not fully resolved. Within this approximation we do not find ReRe independent anomalous scaling within the inertial subrange. If anomalous scaling in the inertial subrange can be verified in the large ReRe limit, this supports the suggestion that small scale structures should be responsible, originating from viscosity either in the bulk (vortex tubes or sheets) or from the boundary layers (plumes or swirls)

    Coherent vortex structures and 3D enstrophy cascade

    Full text link
    Existence of 2D enstrophy cascade in a suitable mathematical setting, and under suitable conditions compatible with 2D turbulence phenomenology, is known both in the Fourier and in the physical scales. The goal of this paper is to show that the same geometric condition preventing the formation of singularities - 1/2-H\"older coherence of the vorticity direction - coupled with a suitable condition on a modified Kraichnan scale, and under a certain modulation assumption on evolution of the vorticity, leads to existence of 3D enstrophy cascade in physical scales of the flow.Comment: 15 pp; final version -- to appear in CM

    Intermittency and the Slow Approach to Kolmogorov Scaling

    Get PDF
    From a simple path integral involving a variable volatility in the velocity differences, we obtain velocity probability density functions with exponential tails, resembling those observed in fully developed turbulence. The model yields realistic scaling exponents and structure functions satisfying extended self-similarity. But there is an additional small scale dependence for quantities in the inertial range, which is linked to a slow approach to Kolmogorov (1941) scaling occurring in the large distance limit.Comment: 10 pages, 5 figures, minor changes to mirror version to appear in PR

    Sodium and potassiumvapor Faraday filters re-visited: Theory and applications

    Get PDF
    A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of the filter transmission on atomic density and external magnetic field strength, as well as the frequency dependence of transmission, are explained in physical terms. As examples, applications of the computed results to ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to enable measurement of the density of mesospheric oxygen atoms are briefly discussed
    corecore