44,943 research outputs found

    Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes

    Full text link
    The short diffusion lengths in insertion battery nanoparticles render the capacitive behavior of bounded diffusion, which is rarely observable with conventional larger particles, now accessible to impedance measurements. Coupled with improved geometrical characterization, this presents an opportunity to measure solid diffusion more accurately than the traditional approach of fitting Warburg circuit elements, by properly taking into account the particle geometry and size distribution. We revisit bounded diffusion impedance models and incorporate them into an overall impedance model for different electrode configurations. The theoretical models are then applied to experimental data of a silicon nanowire electrode to show the effects of including the actual nanowire geometry and radius distribution in interpreting the impedance data. From these results, we show that it is essential to account for the particle shape and size distribution to correctly interpret impedance data for battery electrodes. Conversely, it is also possible to solve the inverse problem and use the theoretical "impedance image" to infer the nanoparticle shape and/or size distribution, in some cases, more accurately than by direct image analysis. This capability could be useful, for example, in detecting battery degradation in situ by simple electrical measurements, without the need for any imaging.Comment: 30 page

    Data quality: Some comments on the NASA software defect datasets

    Get PDF
    Background-Self-evidently empirical analyses rely upon the quality of their data. Likewise, replications rely upon accurate reporting and using the same rather than similar versions of datasets. In recent years, there has been much interest in using machine learners to classify software modules into defect-prone and not defect-prone categories. The publicly available NASA datasets have been extensively used as part of this research. Objective-This short note investigates the extent to which published analyses based on the NASA defect datasets are meaningful and comparable. Method-We analyze the five studies published in the IEEE Transactions on Software Engineering since 2007 that have utilized these datasets and compare the two versions of the datasets currently in use. Results-We find important differences between the two versions of the datasets, implausible values in one dataset and generally insufficient detail documented on dataset preprocessing. Conclusions-It is recommended that researchers 1) indicate the provenance of the datasets they use, 2) report any preprocessing in sufficient detail to enable meaningful replication, and 3) invest effort in understanding the data prior to applying machine learners

    Quantum information storage and state transfer based on spin systems

    Get PDF
    The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.Comment: 11 pages, 9 figures, Review article on the quantum spin based quantum information processing, to appear the special issue of Low Temperature Physics dedicated to the 70-th anniversary of creation of concept "antiferromagnetism" in physics of magnetis
    corecore