68,454 research outputs found

    Effective hadronic Lagrangian for charm mesons

    Get PDF
    An effective hadronic Lagrangian including the charm mesons is introduced to study their interactions in hadronic matter. Using coupling constants that are determined either empirically or by the SU(4) symmetry, we have evaluated the absorption cross sections of J/ψJ/\psi and the scattering cross sections of DD and DD^* by π\pi and ρ\rho mesons.Comment: 5 pages, 4 eps figures, presented at Strangeness 2000, Berkeley. Uses iopart.cl

    Short-time critical dynamics at perfect and non-perfect surface

    Full text link
    We report Monte Carlo simulations of critical dynamics far from equilibrium on a perfect and non-perfect surface in the 3d Ising model. For an ordered initial state, the dynamic relaxation of the surface magnetization, the line magnetization of the defect line, and the corresponding susceptibilities and appropriate cumulant is carefully examined at the ordinary, special and surface phase transitions. The universal dynamic scaling behavior including a dynamic crossover scaling form is identified. The exponent β1\beta_1 of the surface magnetization and β2\beta_2 of the line magnetization are extracted. The impact of the defect line on the surface universality classes is investigated.Comment: 11figure

    Semi-global stabilization of linear time-delay systems with input energy constraint

    Get PDF
    This paper is concerned with semi-global stabilization of linear systems with actuator delay and energy constraints. Under the condition of null controllability by vanishing energy, the parametric Lyapunov equation based L2 low gain feedback is adopted to solve the problem. If the delay in the system is exactly known, a delay-dependent controller is designed and if the delay in the system is either time-varying or not exactly known, a delay-independent controller is established. The proposed approach is used in the linearized model of the relative motion in the orbit plane of a spacecraft with respect to another in a circular orbit around the Earth to validate its effectiveness. © 2011 IFAC.postprintThe 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy, 28 August-2 September 2011. In Proceedings of the 18th IFAC World Congress, 2011, v. 18 pt. 1, p. 5106–511

    Promising thermoelectric performance in van der Waals layered SnSe2

    Get PDF
    SnSe as a lead-free IV–VI semiconductor, has attracted intensive attention for its potential thermoelectric applications, since it is less toxic and much cheaper than conventional PbTe and PbSe thermoelectrics. Here we focus on its sister layered compound SnSe2 in n-type showing a thermoelectric performance to be similarly promising as SnSe in the polycrystalline form. This is enabled by its favorable electronic structure according to first principle calculations, its capability to be effectively doped by bromine on selenium site to optimize the carrier concentration, as well as its intrinsic lattice thermal conductivity as low as 0.4 W/m-K due to the weak van der Waals force between layers. The broad carrier concentration ranging from 0.5 to 6 × 1019 cm−3 realized in this work, further leads to a fundamental understanding on the material parameters determining the thermoelectric transport properties, based on a single parabolic band (SPB) model with acoustic scattering. The layered crystal structure leads to a texture in hot-pressed polycrystalline materials and therefore anisotropic transport properties, which can be well understood by the SPB model. This work not only demonstrates SnSe2 as a promising thermoelectric material but also guides the further improvements particularly by band engineering and texturing approaches

    Strong light-induced negative optical pressure arising from the kinetic energy of conduction electrons in plasmonic cavities

    Full text link
    We found that very strong negative optical pressure can be induced in plasmonic cavities by LC resonance. This interesting effect could be described qualitatively by a Lagrangian model which shows that the negative optical pressure is driven by the internal inductance and the kinetic energy of the conduction electrons. If the metal is replaced by perfect conductors, the optical pressure becomes much smaller and positive.Comment: 18 pages, 8 figure
    corecore