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Abstract: This paper is concerned with semi-global stabilization of linear systems with actuator
delay and energy constraints. Under the condition of null controllability by vanishing energy,
the parametric Lyapunov equation based L2 low gain feedback is adopted to solve the problem.
If the delay in the system is exactly known, a delay-dependent controller is designed and if the
delay in the system is either time-varying or not exactly known, a delay-independent controller
is established. The proposed approach is used in the linearized model of the relative motion in
the orbit plane of a spacecraft with respect to another in a circular orbit around the Earth to
validate its effectiveness.

1. INTRODUCTION

Linear systems with actuator magnitude saturation have
wide engineering background and are difficult to control.
This class of systems have been extensively studied in the
past several decades and many control problems have been
studied. Among these problems are global stabilization
(Kaliora and Astolfi (2004), Sussmann et al. (1994), Teel
(1992)), semi-global stabilization (Lin (1998), Lin et al.
(1996)), finite gain stabilization (Liu et al. (1996)), and
local stabilization and estimation of domain of attraction
(Hu and Lin (2001)).

On the other hand, control of linear systems in the
presence of time delay, especially input delay, has also
been attracting significant attention for several decades.
The delays in the control signals arise from a variety
of sources such as signal transmission and computation.
In fact, the analysis and design of control systems that
takes into account delays in the control input is a classical
problem, and many related problems have been studied in
the literature (see Chen et al. (1995), Gu and Liu (2009),
Hale (1977), Lam et al. (2007), Zhang et al. (2004)
and the references given there). Control systems with
both actuator delay and magnitude saturation have also
received much attention in recent years (see, for example,
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the China Postdoctoral Science Foundation under grant number
20100480059, the Heilongjiang Postdoctoral Foundation of China
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standing Young Teachers at the Harbin Institute of Technology under
grant number HITQNJS.2009.054, a Zhiyuan Chair Professorship at
Shanghai Jiao Tong University, Shanghai, Peoples Republic of China,
and by GRF 7137/09E.

Lin and Fang (2007), Mazenc et al. (2003), Tarbouriech
and da Silva Jr. (2000), Yakoubi and Chitour (2007) and
the references therein).

Similar to magnitude constraints, energy constraints are
also encountered naturally in practical systems because
any physical system can only be powered with finite
energy. However, the problem of controlling energy con-
strained system has not received as much attention that
for magnitude constrained system. Only very recently, has
the null controllability with vanishing energy problem been
considered in Ichikawa (2008) and Priola and Zabczyk
(2003). Under the assumption of null controllability with
vanishing energy, we recently solved the semi-global sta-
bilization problem for this class of constrained systems by
using L2 low gain feedback (Zhou et al. (2010)).

In the present paper, we go a further step over Zhou
et al. (2010) by showing that semi-global stabilization of
an input delayed linear system subject to energy constraint
can also be achieved by a special kind of L2 low gain
feedback, namely, parametric Lyapunov equation based
low gain feedback, provided that the open-loop system is
null controllable with vanishing energy in the absence of
actuator delay. By semi-global stabilization we mean that
a controller is designed such that the closed-loop system is
locally asymptotically stable with its domain of attraction
containing an arbitrarily large bounded set of the state
space. For the case that the delay is constant and exactly
known and for the case that the delay is either time-
varying or unknown, a delay dependent controller and a
delay independent controller are respectively established.
It is shown that the delay in the actuator can be any
arbitrarily large finite value. These results complement the
relating results in Zhou et al. (2010). The effectiveness of
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the proposed approach is validated by the linearized model
of the relative motion in the orbit plane of a spacecraft
with respect to another in a circular orbit around the Earth
subject to actuator delay.

The remainder of this paper is organized as follows. Some
preliminaries and the problem formulation are given in
Section 2. Section 3 contains the main results of this paper.
A numerical example is worked out in Section 4 to show
the effectiveness of the proposed methodology. Section 5
concludes the paper.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem Formulation

Consider a linear system

ẋ (t) = Ax (t) +Bu (t) , (1)

where x (t) ∈ Rn and u (t) ∈ Rm, are, respectively, the
state and input vectors. Let x (t, x0, u) denote the solutions
of (1) with initial condition x0 and input u. Denote

L2 (0, T,R
m)

,

{

f (t) : [0, T ] → Rm

∣

∣

∣

∣

∣

∫ T

0

‖f (t)‖
2
dt <∞

}

.

We recall the following definition of null controllability
with vanishing energy for system (1).

Definition 1. (Ichikawa (2008)) The system (1) (or the
matrix pair (A,B)) is said to be null controllable with
vanishing energy (NCVE) if for each initial x (0) = x0,
there exists a sequence of pairs (TN , uN ) , 0 ≤ TN <
∞, uN ∈ L2 (0, TN ,R

m) such that x (TN , x0, uN ) = 0 and

lim
N→∞

∫ TN

0

‖uN (t)‖
2
dt = 0.

Roughly speaking, a system is NCVE if, for any initial
condition, there exists a control sequence with arbitrary
small energy such that it can steer the state of the system
to the origin. This class of systems and the relating control
problems have many applications in practice. For example,
the relative motion of a spacecraft with respect to another
in a circular orbit around the Earth is captured by a non-
linear system whose linearized version is NCVE (Ichikawa
(2008)). Certainly, it is important in accomplishing a con-
trol objective with arbitrary energy expended.

Regarding the criterion for null controllability with vanish-
ing energy, we recall the following condition from Priola
and Zabczyk (2003) in which the results are developed for
infinite dimensional linear systems.

Lemma 2. Linear system (1) is NCVE if and only if (A,B)
is controllable in the ordinary sense and all the eigenvalues
of A are located in the closed-left half s-plane.

It follows that the conditions for null controllability with
vanishing energy happens to be the conditions for asymp-
totical null controllability with bounded controls (Suss-
mann et al. (1994) and Zhou et al. (2010)).

In this paper, we consider the following linear system with
input delay

ẋ (t) = Ax (t) +Bu (t− τ) , (2)

where x (t) ∈ Rn and u (t) ∈ Rm are, respectively,
the state and input vectors, and τ > 0 is a known
constant scalar representing the delay in the control input.
Throughout this paper, we use Cn,τ = C ([−τ, 0] ,Rn) to
denote the Banach space of continuous vector functions
mapping the interval [−τ, 0] into Rn with the topology
of uniform convergence, and xt ∈ Cn,τ to denote the
restriction of x (t) to the interval [t− τ, t] translated to
[−τ, 0] , that is, xt (θ) = x (t+ θ) , ∀θ ∈ [−τ, 0] . For any
ψ ∈ Cn,τ , we define ‖ψ‖c = supθ∈[−τ,0] ‖ψ (θ)‖ .

The problem we are interested in is as follows:

Problem 3. (L2-Semi-global Stabilization of Input-delayed
Linear System) Consider the linear time delay system (2).
Let Ω ⊂ Cn,τ be a bounded compact set. Find a control
u (t) ∈ UE with

UE =

{

u (t) : [−τ,∞) → Rm

∣

∣

∣

∣

∫ ∞

−τ

‖u (t)‖
2
dt ≤ 1

}

, (3)

such that the closed-loop system is asymptotically stable
for arbitrary initial condition ψ ∈ Ω ⊂ Cn,τ .

Toward solving the above problem, we first recall the
L2 low gain feedback approach studied in Zhou et al.
(2010). Assume that the matrix A (ε) : [0, 1] → Rn×n

is a continuous matrix function of ε and such that

λ (A (ε)) ⊂ C−, ∀ε ∈ (0, 1]

λ (A (0)) ⊂ C−0 , {s : Re{s} ≤ 0}.

Basically, it means that the parametric matrix A (ε) should
be stable for ∀ε ∈ (0, 1] and A (0) should be marginally
unstable. The following definition of L2-vanishment is
initially given in Zhou et al. (2010).

Definition 4. Let S (ε) : [0, 1] → Rm×n and A (ε) :
[0, 1] → Rn×n be stated above. Then (S (ε) , A (ε)) is
called L2-vanishing if

lim
ε→0+

∥

∥

∥
S (ε) eA(ε)t

∥

∥

∥

L2

, lim
ε→0+

(
∫ ∞

0

∥

∥

∥
S (ε) eA(ε)t

∥

∥

∥

2

dt

)
1
2

= 0. (4)

A couple of characterizations for the L2-vanishment were
presented in Zhou et al. (2010), based on which the fol-
lowing new design method named as L2 low gain feedback
is introduced.

Definition 5. (L2 Low Gain Feedback) Assume that (A,B) ∈
(Rn×n,Rn×m) is NCVE. A stabilizing feedback gain
K (ε) : [0, 1] ∈ Rm×n is said to be an L2 low gain feedback
if (K (ε) , A−BK (ε)) is L2-vanishing, namely,

lim
ε→0+

∥

∥

∥
K (ε) e(A−BK(ε))t

∥

∥

∥

L2

= 0.

By using this L2 low gain feedback, it is shown in Zhou
et al. (2010) that Problem 3 can be solved in the case τ = 0
under the condition of null controllability with vanishing
energy. In this paper, we will further show that Problem
3 is also solvable if τ 6= 0 under the same condition.

Without loss of generality, we assume that (A,B) is given
in the following form

A =

[

A0 0
0 A−

]

, B =

[

B0

B−

]

,

where A− contains all eigenvalues of A that have negative
real parts and A0 contains all eigenvalues of A that are on
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the imaginary axis. Since (A,B) is NCVE, we know that
(A0, B0) is controllable. Clearly, the subsystem (A−, B−)
does not affect the solvability of Problem 3. In what
follows, we will further impose, without loss of generality,
the following assumption on the system:

Assumption 6. (A,B) ∈ (Rn×n,Rn×m) is controllable
and all the eigenvalues of A are on the imaginary axis.

2.2 Extension of L2-Vanishment to Nonlinear Systems

In this subsection, we will take a new look at Definition 4
and then introduce some basic ideas for proving the desired
result regarding solutions to Problem 3.

Consider the following family of linear systems:
{

ẋ (t) = A (ε)x (t) , x (0) = x0 ∈ Rn,
y (t) = S (ε)x (t) ,

(5)

where (S (ε) , A (ε)) is defined in Definition 4 and ε ∈ [0, 1].
Notice that

‖y‖L2
=

(
∫ ∞

0

∥

∥

∥
S (ε) eA(ε)tx0

∥

∥

∥

2

dt

)
1
2

.

Then it follows from Definition 4 that (S (ε) , A (ε)) is L2-
vanishing if and only if the L2 norm of the output of system
(5) with arbitrary bounded initial condition x0 ∈ Rn

approaches to zero as ε does. This observation implies the
possibility of extending the definition of L2-vanishment for
matrix pair (S (ε) , A (ε)) to nonlinear systems.

Definition 7. Consider the following family of nonlinear
systems

{

ẋ (t) = A (ε, x (t)) , x (0) = x0 ∈ Rn,
y (t) = S (ε, x (t)) ,

(6)

where A (ε, x) : [0, 1] × Rn → Rn is continuous with
respect to ε and globally Lipschitz with respect to x,
S (ε, x) : [0, 1] × Rn → Rm is continuous with respect
to ε and ε ∈ [0, 1] . Assume that for arbitrary ε ∈ [0, 1],
the system in (6) is globally asymptotically stable. Then
the system in (6) is called L2-vanishing if

‖x0‖ ≤ D <∞ ⇒ lim
ε→0+

‖y‖L2
= 0,

where D is any positive scalar.

The following simple results for L2-vanishment can be
derived easily by definition. The idea found in the proof
of this result will be adopted to prove our main results in
the next section.

Proposition 8. The system in (6) is L2-vanishing if there
exists a scalar ε∗ > 0 and a function V (ε, x) : [0, ε∗] ×
Rn → R+, V (ε, 0) = 0 such that

‖x‖ ≤ D <∞ ⇒ lim
ε→0+

V (ε, x) = 0, (7)

and
V̇ (ε, x (t)) ≤ −κ (ε) ‖y (t)‖

2
, (8)

where κ (ε) : [0, ε∗] → R+ is bounded for all ε ∈ [0, ε∗] .

Proof. Since system (6) is globally asymptotically stable,
we have

‖x0‖ ≤ D <∞ ⇒ lim
t→∞

‖x (t)‖ = 0. (9)

Taking integral on both sides of (8) from 0 to ∞ gives

lim
t→∞

V (ε, x (t))− V (ε, x0) ≤ −κ (ε)

∫ ∞

0

‖y (t)‖
2
dt.

Then it follows from (9) and V (ε, 0) = 0 that

‖x0‖ ≤ D <∞ ⇒

∫ ∞

0

‖y (t)‖
2
dt ≤

1

κ (ε)
V (ε, x0) .

Therefore, by invoking (7) and the boundness of κ (ε), we
get

lim
ε→0+

∫ ∞

0

‖y (t)‖
2
dt ≤ lim

ε→0+

(

1

κ (ε)
V (ε, x0)

)

= 0.

The result then follows from Definition 7.

Remark 9. We can assume without loss of generality that
κ (ε) = 1 since we can replace V (ε, x) in Proposition 8 by
κ−1 (ε)V (ε, x) .

Remark 10. If the Lyapunov function V (ε, x) in Propo-
sition 8 is chosen as xTP (ε)x and the nonlinear system
(6) is replaced by the linear plant (5), the conditions in
Proposition 8 can be written as the conditions in Theorem
4 proven in Zhou et al. (2010) where it is further shown
that this condition is both necessary and sufficient for the
L2 vanishment of linear system (5).

At the end of this subsection, we give some introduction
to the parametric Lyapunov equation based L2 low gain
feedback (see Zhou et al. (2010)) which will be used in this
paper to solve Problem 3. This kind of L2 low gain design
is based on solution to the following parametric ARE:

ATP + PA− PBBTP = −εP. (10)

Some relevant properties of this ARE are summarized in
the following lemma whose proof can be found in Zhou
et al. (2010).

Lemma 11. Assume that (A,B) satisfies Assumption 6.
Then for arbitrary ε > 0, ARE (10) has a unique positive
definite solution P (ε) = W−1 (ε) which satisfies the
following Lyapunov equation:

W
(

A+
ε

2
I
)T

+
(

A+
ε

2
I
)

W = −BBT. (11)

Moreover,

lim
ε→0+

P (ε) = 0

d

dε
P (ε) > 0, ∀ε > 0

P (ε)BBTP (ε) ≤ nεP (ε)

eA
TtP (ε) eAt ≤ eωεtP (ε) , ∀t ≥ 0, ∀ω ≥ n− 1.

3. MAIN RESULTS

In this section, we use the idea in proving Proposition 8
for nonlinear systems to study the semi-global stabiliza-
tion problem of time-delayed linear system with energy
constraints by using L2 low gain feedback.

3.1 Delay-Dependent Feedback

Under the condition that the time delay τ is exactly
known, we can propose the following delay dependent
solution to Problem 3 by state feedback.

Theorem 12. Consider linear system (2) with an arbitrar-
ily large but finite delay τ . Assume that (A,B) satisfies
Assumption 6. Then there exists an ε∗ ∈ (0, 1] such that
the family of linear state feedback

u (t) = −BTP (ε) eAτx (t) , ∀ε ∈ (0, ε∗] , (12)

where P (ε) is the unique positive definite solution to the
parametric ARE (10), solves Problem 3.
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Proof. The closed-loop system consisting of (2) and (12)
is given by

ẋ (t) = Ax (t)−BBTP (ε) eAτx (t− τ) , (13)

whose initial condition is x (θ) = ψ (θ) , ∀θ ∈ [−τ, 0] , ψ ∈
Ω ⊂ Cn,τ , t ≥ 0. It follows that































x (t) = eAtψ (0)−

∫ t

0

eA(t−s)BBT

· P (ε) eAτψ (s− τ) ds, t ∈ [0, τ ] ,

x (t) = eAτx (t− τ)−

∫ t

t−τ

eA(t−s)B

·BTP (ε) eAτx (s− τ) ds, t ≥ τ.

(14)

We get easily from the first equation in (14) that (inequal-
ity (22) in Zhou et al. (2010)), ∀t ∈ [0, τ ],

‖x (t)‖ ≤ max
s∈[0,τ ]

{∥

∥eAs
∥

∥

} (

1 + τ
∥

∥BBTP eAτ
∥

∥

)

‖ψ‖c (15)

which is bounded as ψ ∈ Ω . Therefore, we need only to
consider the closed-loop system (13) for t ≥ τ. In this case,
inserting the second relation in (14) into the closed-loop
system (13) gives, for all t ≥ τ ,

ẋ (t) =
(

A−BBTP (ε)
)

x (t)−BBTP (ε)π (t) , (16)

where

π (t) =

∫ t

t−τ

eA(t−s)BBTP (ε) eAτx (s− τ) ds.

The initial condition (t ∈ [−τ, τ ]) ψτ (θ) = ψ (τ + θ) , ∀θ ∈
[−2τ, 0] for system (16) can be defined as follows (pp. 132
in Hale (1977)):

ψτ (θ) =

{

ψ (τ + θ) , ∀θ ∈ [−2τ,−τ ] ,
x (τ + θ) , ∀θ ∈ [−τ, 0] ,

(17)

where x (t) , ∀t ∈ [0, τ ] is given in the first equation in (14).
Denote

Ωn,2τ ,
{

ψτ (θ) , ∀θ ∈ [−2τ, 0] | ψ ∈ Ω
}

⊂ Cn,2τ .

The solution to the time-delay system (13) for t ≥ 0 with
initial condition ψ ∈ Ω coincides with the solution to the
time-delay system (16) with initial condition ψτ ∈ Ω for
all t ≥ τ.

By using ARE (10) and Lemma 11, the time derivative
of V1 (x (t)) = xT (t)P (ε)x (t) along the trajectories of
system (16) satisfies (inequality (28) in Zhou et al. (2010))

V̇1 (x) ≤ −εxT (t)P (ε)x (t) + nεπT (t)P (ε)π (t) . (18)

According to (31) in Zhou et al. (2010), we have

πT (t)P (ε)π (t) ≤ (nε)
2
τ

∫ t

t−τ

eωε(t−s+τ)V1 (x (s− τ)) ds,

where ω = n − 1. Notice that eωε(t−s+τ) ≤ e2τωε, ∀s ∈
[t− τ, t]. Therefore, the above inequality can be continued
as

πT (t)P (ε)π (t)

≤ (nε)
2
τe2τωε

∫ t

t−τ

xT (s− τ)P (ε)x (s− τ) ds

= (nε)
2
τe2τωε

∫ t−τ

t−2τ

xT (s)P (ε)x (s) ds

≤ (nε)
2
τe2τωε

∫ t

t−2τ

xT (s)P (ε)x (s) ds,

substituting of which into (18) gives

V̇1 (x (t)) ≤ −εxT (t)P (ε)x (t)

+ e2τωε (nε)
3
τ

∫ t

t−2τ

xT (s)P (ε)x (s) ds. (19)

Choose another functional V2 (xt) as

V2 (xt) = e2τωε (nε)
3
τ

∫ 2τ

0

(
∫ t

t−s

xT (l)P (ε)x (l) dl

)

ds,

whose derivative is equal to

V̇2 (xt) = 2e2τωε (nε)
3
τ2xT (t)P (ε)x (t)

− e2τωε (nε)
3
τ

∫ t

t−2τ

xT (s)P (ε)x (s) ds. (20)

Now choose the Lyapunov-Krasovskii functional V (xt) as

V (xt) , V1 (x (t)) + V2 (xt) . (21)

Then it follows from (19) and (20) that the time derivative
of V (xt) along the trajectories of system (16) satisfies

V̇ (xt) ≤ −εxT (t)P (ε)x (t)

+ 2e2τωε (nε)
3
τ2xT (t)P (ε)x (t)

= −ε
(

1− 2e2τωεn3ε2τ2
)

xT (t)P (ε)x (t) . (22)

Let ε∗1 = ε∗1 (τ) > 0 be such that

1− 2e2τωεn3ε2τ2 ≥
1

2
, ∀ε ∈ [0, ε∗1] .

Such an ε∗1 clearly exists. Then inequality (22) implies

V̇ (xt) ≤ −
1

2
εxT (t)P (ε)x (t) , ∀ε ∈ (0, ε∗1] . (23)

The global stability of the closed-loop system then follows
from the Lyapunov stability theorem.

In view of (12) and by using Lemma 11, we get

‖u (t)‖
2
= xT (t) eA

TτP (ε)BBTP (ε) eAτx (t)

≤ nεxT (t) eA
TτP (ε) eAτx (t)

≤ nεeωετxT (t)P (ε)x (t) .

With this, the inequality in (23) implies that

V̇ (xt) ≤ −
1

2neωετ
‖u (t)‖

2
. (24)

Integrating both sides of (24) from 0 to ∞ gives

lim
t→∞

V (xt)− V (xτ ) ≤ −
1

2neωετ

∫ ∞

τ

‖u (t)‖
2
dt, (25)

where xτ = ψτ (θ) is the initial state. Clearly, V (xt) in
(21) satisfies lim‖x(t)‖→0 V (xt) = 0. Therefore, it follows
from limt→∞ ‖x (t)‖ = 0 that limt→∞ V (xt) = 0 from
which the inequality in (25) can be written as

∫ ∞

τ

‖u (t)‖
2
dt ≤ 2neωετV (xτ ) . (26)

On the other hand, we can compute
∫ 0

−τ

‖u (t)‖
2
dt =

∫ 0

−τ

∥

∥BTP (ε) eAτψ (t)
∥

∥

2
dt

≤ τ sup
ψ∈Ω

{‖ψ‖c}
∥

∥BT
∥

∥

∥

∥eAτ
∥

∥ ‖P (ε)‖ ,

and
∫ τ

0

‖u (t)‖
2
dt =

∫ τ

0

∥

∥BTP (ε) eAτx (t)
∥

∥

2
dt

≤ τ
∥

∥BT
∥

∥

∥

∥eAτ
∥

∥ ‖P (ε)‖ ‖ψ‖c . (27)
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As τ is finite and Ω is bounded, it follows from (15), (26),
(27) and limε→0+ P (ε) = 0 that there exists an ε∗ ∈ (0, ε∗1]
such that

‖u‖L2
=

∫ ∞

−τ

‖u (t)‖
2
dt

=

∫ ∞

τ

‖u (t)‖
2
dt+

∫ τ

0

‖u (t)‖
2
dt+

∫ 0

−τ

‖u (t)‖
2
dt

≤ 1, ∀ε ∈ (0, ε∗], ∀ψ ∈ Ω.

The proof is ended.

Remark 13. By combining the proof of Theorem 12 and
the proof of Theorem 4 in Zhou et al. (2010), we can also
show that Problem 3 is solvable by output feedback. The
details are omitted for brevity.

Remark 14. The result in Theorem 12 can be interpreted
in the “L2 vanishment” framework. In fact, it follows from
the proof of this theorem that the time-delay system
{

ẋ (t) = Ax (t)−BBTP (ε) eAτx (t− τ) ,
y (t− τ) , u (t− τ) = −BTP (ε) eAτx (t− τ) , t ≥ 0

is globally asymptotically stable for all ε ∈ (0, ε∗] and

sup
ψ∈Ω

{‖ψ‖c} ≤ D <∞ ⇒ lim
ε→0+

‖y (t)‖L2
= 0,

which is similar to the L2 vanishment defined in Definition
7.

Remark 15. The semi-global stabilization of system (2)
with input magnitude saturation has been solved in Zhou
et al. (2010). The above theorem shows that the semi-
global stabilization of system (2) with energy constraints
can also be achieved which supplements the results in Zhou
et al. (2010). We also noticed that we have provided in this
paper an elegant proof of the global stability for the closed-
loop system by choosing the special Lyapunov-Krasovskii
function (21) in the absence of energy (magnitude) con-
straints which is different from that in Zhou et al. (2010)
where the Razumikhin Stability Theorem is utilized.

3.2 Delay-Independent Feedback

In the above subsection, the delay in the system is assumed
to be exactly known and constant. But sometimes the
delay is time-varying and not exactly known. For this
reason, in this subsection, we reconsider system (2) with
τ = τ (t) : [0,∞) → R+ being a continuous function of
time. Since the bound on τ (t) can be arbitrarily large yet
finite, as shown in Zhou et al. (2009), system (2) can be
(globally) stabilized provided all the poles of A are zero
and (A,B) is stabilizable. A delay-dependent controller
was designed in Zhou et al. (2009). In this subsection,
we will further show that such controller can also solve
Problem 3.

Theorem 16. Assume that (A,B) satisfied Assumption 6
and, moreover, all the eigenvalues of A ∈ Rn×n are zero.
Let P (ε) be the unique positive definite solution of the
parametric ARE (10). Then there exists an ε∗ > 0 such
that the following state feedback law

u (t) = −BTP (ε)x (t) , ε ∈ (0, ε∗] , (28)

solves Problem 3 for all values of delay satisfying

0 ≤ τ (t) ≤ τ̄ , 0 ≤ t <∞, (29)

where τ̄ is arbitrarily large and bounded scalar.

The proof of Theorem 16 is omitted due to space limita-
tion.

4. A NUMERICAL EXAMPLE

Consider a linear system

ẋ (t) =







0 0 1 0
0 0 0 1

3ω2 0 0 2ω
0 0 −2ω 0






x (t) +







0 0
0 0
1 0
0 1






u (t− τ) , (30)

which is a linearized model of the relative motion in the
orbit plane (the in-plane motion) of a spacecraft with
respect to another in a circular orbit around the Earth
(Ichikawa (2008)), and the scalar τ represents the actuator
delay induced by signal transformation (Polites (1999)).
The positive scalar ω is the orbit rate (angular velocity) of
the satellite in a circular motion. Notice that the Jordan
canonical form of A is

AJ =







0 1 0 0
0 0 0 0
0 0 0 ω
0 0 −ω 0






,

and (A,B) is controllable. Therefore, it follows from
Lemma 2 that (A,B) is NCVE. Notice that A is not Lya-
punov stable. As (A,B) is NCVE, under the condition that
the value of τ is exactly known, it follows from Theorem
12 that system (30) can be semi-globally stabilized with
bounded energy by linear state feedback. According to
Lemma 11, by solving the unique positive definite solution
P (ε) to ARE (10), the state feedback controller is given
by

u (t) = −BTP (ε) eAτx (t) , (31)

where eAτ is given by












4− 3 cos(ωτ) 0
1

ω
sin(ωτ)

2

ω
(1− cos(ωτ))

6 sin(ωτ)− 6ωτ 1
2

ω
(cos(ωτ)− 1) −3τ +

4

ω
sin(ωτ)

3ω sin(ωτ) 0 cos(ωτ) 2 sin(ωτ)
(6 cos(ωτ)− 6)ω 0 −2 sin(ωτ) −3 + 4 cos(ωτ)













For simulation, we choose ω = 1 and the initial condition

as x (θ) = [ 2 −1 2 −1 ]
T
, θ ∈ [−τ, 0]. For different low

gain parameters ε, the L2 norms of the input signals
are plotted in Fig. 1 from which we clearly see that
‖u‖L2

approaches to zero as ε does, namely, the L2 semi-

global stabilization problem for system (30) can be solved.
Specially, for ε = 0.15 and ε = 0.1, the state evaluation
and control signals are recorded in Fig 2.

5. CONCLUSIONS

This paper has considered semi-global stabilization of
input delayed linear systems subject to control energy
constraints. The parametric Lyapunov equation based L2

low gain feedback is adopted to solve the problem. Two
classes of linear feedback laws, one delay-dependent and
the other delay-independent, were proposed. A system
that is the linearized model of the relative motion in the
orbit plane (the in-plane motion) of a spacecraft with
respect to another in a circular orbit around the Earth,
was used to illustrate the effectiveness of the proposed
approach.
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Fig. 1. L2 norm of the control signal (31) for different
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Fig. 2. State evolution and control signals of the time delay
system (30) for different values of ε.
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