5,757 research outputs found
Computing Correct Truncated Excited State Wavefunctions
We demonstrate that, if a truncated expansion of a wave function is small,
then the standard excited states computational method, of optimizing one root
of a secular equation, may lead to an incorrect wave function - despite the
correct energy according to the theorem of Hylleraas, Undheim and McDonald -
whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)]
(independent of orthogonality to lower lying approximants) leads to correct
reliable small truncated wave functions. The demonstration is done in He
excited states, using truncated series expansions in Hylleraas coordinates, as
well as standard configuration-interaction truncated expansions.Comment: 4 pages, 1 figure, 2 tables, ICCMSE2016: International Conference of
Computational Methods in Science and Engineerin
Formation of Hydrogenated Graphene Nanoripples by Strain Engineering and Directed Surface Self-assembly
We propose a new class of semiconducting graphene-based nanostructures:
hydrogenated graphene nanoripples (HGNRs), based on continuum-mechanics
analysis and first principles calculations. They are formed via a two-step
combinatorial approach: first by strain engineered pattern formation of
graphene nanoripples, followed by a curvature-directed self-assembly of H
adsorption. It offers a high level of control of the structure and morphology
of the HGNRs, and hence their band gaps which share common features with
graphene nanoribbons. A cycle of H adsorption/desorption at/from the same
surface locations completes a reversible metal-semiconductor-metal transition
with the same band gap.Comment: 11 pages, 5 figure
Contextual cueing: implicit memory of tactile context facilitates tactile search
In visual search, participants detect and subsequently discriminate targets more rapidly when these are embedded in repeatedly encountered distractor arrangements, an effect termed contextual cueing (Chun & Jiang Cognitive Psychology, 36, 28–71, 1998). However, whereas previous studies had explored contextual cueing exclusively in visual search, in the present study we examined the effect in tactile search using a novel tactile search paradigm. Participants were equipped with vibrotactile stimulators attached to four fingers on each hand. A given search array consisted of four stimuli (i.e., two items presented to each hand), with the target being an odd-one-out feature singleton that differed in frequency (Exps. 1 and 2) or waveform (Exp. 3) from the distractor elements. Participants performed a localization (Exps. 1 and 2) or discrimination (Exp. 3) task, delivering their responses via foot pedals. In all three experiments, reaction times were faster when the arrangement of distractor fingers predicted the target finger. Furthermore, participants were unable to explicitly discriminate repeated from nonrepeated tactile configurations (Exps. 2 and 3). This indicates that the tactile modality can mediate the formation of configural representations and use these representations to guide tactile search
Recommended from our members
Predicting Conceptual Processing Capacity from Spontaneous Neuronal Activity of the Left Middle Temporal Gyrus
Conceptual processing is a crucial brain function for humans. Past research using neuropsychological and task-based functional brain-imaging paradigms indicates that widely distributed brain regions are related to conceptual processing. Here, we explore the potential contribution of intrinsic or spontaneous brain activity to conceptual processing by examining whether resting-state functional magnetic resonance imaging (rs-fMRI) signals can account for individual differences in the conceptual processing efficiencies of healthy individuals. We acquired rs-fMRI and behavioral data on object conceptual processing tasks. We found that the regional amplitude of spontaneous low-frequency fluctuations in the blood oxygen level-dependent signal in the left (posterior) middle temporal gyrus (LMTG) was highly correlated with participants' semantic processing efficiency. Furthermore, the strength of the functional connectivity between the LMTG and a series of brain regions-the left inferior frontal gyrus, bilateral anterior temporal lobe, bilateral medial temporal lobe, posterior cingulate gyrus, and ventromedial and dorsomedial prefrontal cortices-also significantly predicted conceptual behavior. The regional amplitude of low-frequency fluctuations and functionally relevant connectivity strengths of LMTG together accounted for 74% of individual variance in object conceptual performance. This semantic network, with the LMTG as its core component, largely overlaps with the regions reported in previous conceptual/semantic task-based fMRI studies. We conclude that the intrinsic or spontaneous activity of the human brain reflects the processing efficiency of the semantic system.Psycholog
Multifractal analysis of complex networks
Complex networks have recently attracted much attention in diverse areas of
science and technology. Many networks such as the WWW and biological networks
are known to display spatial heterogeneity which can be characterized by their
fractal dimensions. Multifractal analysis is a useful way to systematically
describe the spatial heterogeneity of both theoretical and experimental fractal
patterns. In this paper, we introduce a new box covering algorithm for
multifractal analysis of complex networks. This algorithm is used to calculate
the generalized fractal dimensions of some theoretical networks, namely
scale-free networks, small world networks and random networks, and one kind of
real networks, namely protein-protein interaction networks of different
species. Our numerical results indicate the existence of multifractality in
scale-free networks and protein-protein interaction networks, while the
multifractal behavior is not clear-cut for small world networks and random
networks. The possible variation of due to changes in the parameters of
the theoretical network models is also discussed.Comment: 18 pages, 7 figures, 4 table
- …
