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Abstract. Let G = (Vi1,V2,E) be a balanced bipartite graph with 2n vertices. The
bipartite binding number of G, denoted by B(G), is defined to be n if G = Ky, and
min; ¢ 1,2y min pxscv; |N(S)|/|S| otherwise. We call G bipancyclic if it contains a cycle of ev-

IN(S)|<n
ery even length m for 4 < m < 2n. The purpose of this paper is to show that if B(G) > 3/2 and
n > 139, then G is bipancyclic; the bound 3/2 is best possible in the sense that there exist infinitely

many balanced bipartite graphs G that have B(G) = 3/2 but are not Hamiltonian.
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1. Introduction. Let G = (V, E) be a graph. The binding number of G, denoted
by b(G), is defined to be

Jmin - [N(S)[/1S];
IN(SI<IV]

where N(S) ={v eV : uv € E for some u € S}. This parameter was introduced by
Woodall [8] to measure how well the vertices of G are bound together; in particular,
if b(G) is large, then G has lots of edges fairly well distributed. The binding number
resembles some other graph invariants, such as the minimum degree, connectivity,
and toughness, in certain ways while providing more global structural information.
In the literature there are a number of results showing that various properties of G
are consequences of assumptions on the value of b(G), including the following theorem
on Hamiltonian cycles.

THEOREM 1.1 (Woodall [8]). Every graph G with b(G) > 3/2 is Hamiltonian.

Call G pancyclic if it contains a cycle of every length m for 3 < m < |V|. As
conjectured by Woodall [8] and proved by Shi [6, 7], this assertion can be strengthened
as follows.

THEOREM 1.2 (Shi [6, 7]). Every graph G with b(G) > 3/2 is pancyclic.

Observe that for bipartite graphs, the binding number does not give much in-
formation about their structures (or well-boundness) when compared to nonbipartite
graphs. For instance, both K, ,, (a complete bipartite graph) and nKs (union of n
disjoint edges) have binding number 1 for n > 1; their structures, however, are dra-
matically different. Furthermore, for any bipartite graph G = (V4, Vs, E), we have
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b(G) < min {|Va|/|V1], [Vi|/|Vz|} < 1. Hence neither Theorem 1.1 nor Theorem 1.2
applies to G. In graph theory it is common for results to have a “bipartite” version;
such a typical example is Jackson’s theorem [3], which asserts that every 2-connected
k-regular graph with at most 3k vertices is Hamiltonian. Haggkvist [2] conjectured
that every 2-connected k-regular bipartite graph G with at most 6k — 6 vertices is
Hamiltonian, which was confirmed by Jackson and Li [4] when G contains at most
6k — 38 vertices. So a natural question to ask is, what are the counterparts of the
above binding number theorems on bipartite graphs? To find the answer, clearly we
need a new concept of binding number in order to better reflect the bipartiteness.

Let G = (V1, Vo, E) be a balanced bipartite graph with 2n vertices. The bipartite
binding number of G, denoted by B(G), is defined to be n if G = K, ,, and

min  min |N(5)|/|S]
i€{1,2} 0#3<V;
IN(S)|<n
otherwise. We call G bipancyclic if it contains a cycle of every even length m for
4 < m < 2n. The purpose of this paper is to establish the following bipartite version
of the above two theorems.

THEOREM 1.3. Let G be a balanced bipartite graph with 2n vertices. If B(G) >
3/2 and n > 139, then G is bipancyclic.

We shall exhibit infinitely many balanced bipartite graphs G that have B(G) =
3/2 but are not Hamiltonian in section 2 (see Proposition 2.5). Thus the bound 3/2
in our theorem is best possible. Moreover, the proof techniques of our theorem are
substantially different from those of Theorems 1.1 and 1.2.

Let us introduce some notation before proceeding. Given a graph G, we use V(G)
and E(G) to denote its vertex set and edge set, respectively. For each v € V(G), we
use d(v) and N(v) to denote its degree and neighborhood, respectively. For each
S C V(G), it is clear that N(S) = Uyeg N(v). For each subgraph H of G, let G — H
denote the subgraph of G induced by V(G) — V(H) and set Ny (S) := N(S)NV(H).
When G is a bipartite graph with bipartition (V1,V3), we set V;(H) :=V; NV (H) for
i=1,2.

Throughout this paper, we use C,, to denote a cycle of length n and assume that
each cycle C has an implicit clockwise orientation. With this assumption, véf and v,
will stand for the successor and predecessor of a vertex v on C' under this orientation,
respectively; we shall drop the subscript C if there is no danger of confusion. We
define v** recursively by vt? = v and vt0+) = (vt for i > 0 and define v—*
analogously. For any two vertices v and v on C, let uﬁv denote the path from v to
v on C in the clockwise direction, and let ©Cv denote the path from u to v on C in
the counterclockwise direction. Set Clu,v] := V(u%v) and C(u,v] := Clu,v] — {u},
etc. For each X C V(C) and i > 1, define X% := {7 : 2 € X} and X% :=
{z7%: x € X}. If X = N¢(v) for some vertex v, then we shall simply write N/’ (v)
and N;"(v) as opposed to the more cumbersome (N (v))™* and (N¢(v))~. We also
define X0 := X =: X9 for convenience.

The remainder of this paper is organized as follows. In section 2, we derive some
basic properties satisfied by bipartite binding numbers. In section 3, we show the
existence of certain nested cycle structures in G under some assumptions. In section 4,
we first establish a bipartite version of the hopping lemma originally developed by
Woodall [8] and then employ it to further grow the nested cycle structures obtained
in section 3 under some other assumptions. In section 5, we prove that G contains a
cycle of every even length based on the aforementioned nested cycle structures.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/14 to 147.8.31.43. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

AN OPTIMAL CONDITION FOR BIPANCYCLISM 599

2. Preliminaries. Let G = (V1, V5, E) be a balanced bipartite graph with 2n
vertices such that G # K,, ,. Recall the definition of the bipartite binding number
B(G); a subset S of V;, for i = 1 or 2, is called a binding set of G if |[N(S)| < n and
B(G) = [N(9)[/]S].

The following proposition asserts that the value of B(G) is uniquely determined
by G rather than its balanced bipartition, so the bipartite binding number is well
defined.

PROPOSITION 2.1. Let G be a balanced bipartite graph. Then the value of B(Q)
is independent of the choice of balanced bipartition.

Proof. If G is connected, then the choice of balanced bipartition is unique (up to
permutation of V; and V3), so the statement holds trivially. It remains to consider
the case when G is disconnected.

Let (V4,V2) be a balanced bipartition of G such that the value of B(G) is mini-
mized (let ¢ denote this minimum value) and, subject to this, a corresponding bind-
ing set S has smallest possible size. We claim that S is entirely contained in one
component of G; for otherwise, let G1,Go,..., Gk be all components of G that in-
tersect S, where k > 2, and set S; := SNV(G;) for 1 < i < k. From the
minimality assumption on |S|, we deduce that |N(S;)| > ¢|S;| for all i and hence
clS| = Zle clSi| < Zle |N(S;)| = |N(S)| = ¢|S|; this contradiction justifies the
claim. Tt follows that for any balanced bipartition (Uy,Us) of G, either S C U;
or S C Us. Therefore, S is also a binding set of G with respect to bipartition
(U1, Us). O

PROPOSITION 2.2. Ewvery balanced bipartite graph G with B(G) > 1 is connected.

Let us now illustrate bipartite binding numbers using two special classes of graphs.

PROPOSITION 2.3. B(Ch,) = %=L forn > 3.

Proof. Let (V1,Va) be the bipartition of Ca,, and let S be a nonempty subset of
Vi, i=1or 2, with |[N(S)| < n. From the structure of Cs,, we see that |S| < n — 2
and |S| < |N(S)|. Hence

|N(S)|>|S|+1_ 1 1 n—1

S| = 5| B

with equality when S = V; — {u, v}, where u and v are two vertices in V; of distance
2 on Cy,,. So the statement is established. O

Let s and t be two positive integers, and let sKy @ tK5 be the bipartite graph
obtained from the union of s disjoint edges a;b; for 1 < ¢ < s by adding 2t vertices
€1,€2,...,Ct,d1,d2, ..., d; and adding edges a;d; and bicj foralll <¢<sand1 <j <
t (see Figure 2.1). For convenience, set A := {a1,aq9,...,as}, B := {b1,ba,...,bs},
C :={c1,¢2,...,¢:}, and D := {dy,ds,...,d;}. Clearly, sKy @ tK, has a unique
bipartition (Vi,V2), where V1 = AUC and Vo = BU D.

PROPOSITION 2.4. Let s and t be two positive integers. Then

1
- if s=1,

¢

1

mind 2 S2EEEL e oo
t s—1

B(sKs ®tK») =

Proof. Let G = sKy @ tK and let S be a binding set of G. Symmetry allows us
to assume that S C V4. Thus |[N(S)| < |Vz| by definition.

If s=1,thena; ¢ S. So S C C and N(S) = {b1}. As S is a binding set of G,
we must have S = C. Therefore, B(G) = |N(5)|/|S| = 1/t.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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ay bl
az Q O by
as ‘9‘%‘9@‘7‘ bs
\% ’A“‘«
L
& A 7N % dy
C2 da
Ct d;

Fic. 2.1. sKo @ tKo.

If s > 1, then A—S # (). Furthermore, SNA = ) provided SNC' # (0, for otherwise
we would have N(S) = V3, a contradiction. It follows that S is either a proper subset
of A or a subset of C. Thus |N(9)| equals | S|+t in the former case and s in the latter
case. As S is a binding set of G, either S = A — {a;} for some 1 <i<sor S =C.
From the definition we further deduce that B(G) = [N(S)|/|S| = min{$, =1},
completing the proof. O

The following proposition asserts that the bound 3/2 in Theorem 1.3 is indeed
the threshold for a balanced bipartite graph to be Hamiltonian or bipancyclic.

PROPOSITION 2.5. Let G = sKy @tKo. Then B(G) =3/2 if s=2t+ 1, and G
is not Hamiltonian if s > 2t + 1.

Proof. The first statement follows instantly from Proposition 2.4. If s > 2t 4+ 1,
then G — (C'U D) contains precisely s components (see Figure 2.1) with s > |C'U D|.
It follows that G contains no Hamiltonian cycle. O

The following lemma gives an alternative definition of the bipartite binding
number.

LEMMA 2.6. Let G = (V4, V5, E) be a balanced bipartite graph with 2n vertices.
If G # K, n, then B(G) is the largest nonnegative number ¢ such that

AN(S) = (e=1)n+|S]|

for every nonempty subset S of V; (i =1,2).

Proof. By definition, it suffices to show that for any given constant ¢ > 0, the
following two statements are equivalent:

(a) ¢|N(S)| > (¢ — 1)n+|S| for every nonempty S CV; and i = 1, 2;

(b) |N(S)| > min{c|S|,n} for every nonempty S C V; and i = 1, 2.

To this end, let S be a nonempty subset of V; for ¢ = 1 or 2, and let T :=
Vs_;—N(S). Then N(T) and S are disjoint subsets of V;, so |[N(T)|+ S| <n
and hence

(©) IN(D)| <n—1S| <n—1.

If (a) holds, then (with T in place of S) either ¢|N(T)| > (¢ — 1)n + |T| = en —
IN(S)| or T = (. In the former case, |N(S)| > min{c(n — |[N(T)|),n} > min{c|S|,n}
by (c). In the latter case, Vs_; —N(S) = 0. So |N(S)| = n > min{c|S|,n}. Combining
these two cases, we obtain (b).
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Conversely, if (b) holds, then (with T in place of S) either |[N(T')| > min{c|T|,n} =
min{cn — ¢|N(S)|,n} or T = 0. In the former case, ¢|N(S)| > en — |N(T)| >
(¢ = 1)n+|S] by (c). In the latter case, Vs_; — N(S) = 0. So [N(S)| = n and hence
¢|N(S)| = en > (¢ — 1)n + |S|. Combining these two cases, we establish (a). O

As usual, we use §(G) to denote the minimum degree of a graph G. The above
lemma yields a lower bound on 6(G) when restricted to |S| = 1.

COROLLARY 2.7. Let G = (V1,V2,E) be a balanced bipartite graph with 2n

vertices. If B(G) > ¢ > 0, then
(c—Dn+1
—

§(G) >

LEMMA 2.8. Let G = (V4, V5, E) be a balanced bipartite graph with 2n vertices.
If B(G) > n/2, then

IN(S)| = [(n+2]5]+1)/3]
for every nonempty proper subset S of V; (i=1,2).
Proof. As the statement holds trivially if G = K, ,, we assume hereafter that

G # K, . Let B(G) = ¢ and let S be a nonempty proper subset of V; for i = 1, 2.
By Lemma 2.6, we have

-1 —
(c—Dn+ls| __n—lIs|

N >
NS 2 .
This together with n — |S| > 0 and ¢ > 3/2 implies
2(n—|S
IN(S)| > n - 201D,
and hence the desired statement holds. O

The following lemma will play an important role in the subsequent proofs.

LEMMA 2.9. Let G = (V1,Va, E) be a balanced bipartite graph with 2n vertices
and with B(G) > 3/2. Let X CV; and Y C Vs_;, with i =1 or 2, be nonempty sets
such that |X|, |Y|, IN(X)|, and |N(Y)| are all less than n. If |Y] > |N(X)| —t for
some nonnegative integer t, then |[N(Y)| > |X|+ (2n+4)/5 — t.

Proof. Symmetry allows us to assume that i = 1. For S = X, Y, by Lemma 2.8
and the definition of B(G), we have

(2.1) IN(S)| > max{

It follows that

n+2[S|+1 3[5]+1
3 T2 '

B |N(X)|—t>max{n+2|;(|+1 4, 3|X£+1 —t}.

Plugging this inequality into (2.1) (with S =Y"), we obtain

n+2(—3‘)§'+1 —t) +1 3(7’”2'?‘“ —t) +1

NY)|l >
IN(Y)| 2 max - , 5

Consequently,

IN(Y)| = [X] 4+ max {f(t), g(t)} — ¢,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Fia. 3.1. C%;.

where f(z) := (n+ z + 2)/3 and g(z) := (n — x + 2)/2. Observe that f(z) is an
increasing function of x, while g(z) is a decreasing function of x, and that f(z¢) =
g9(xo) = (2n+4)/5, with zy = (n + 2)/5. Hence max{f(z), g(x)} > f(xo) for all z.
Therefore |[N(Y)| > | X| + f(zo) —t = |X|+ (2n+4)/5 — t, as desired. O

3. Nested cycle structures. Let & and m be two positive integers with k£ >
m 4+ 2, let C = ajasz...asa; be a cycle of length k, where a;41 = a:r for each i
(with agg+1 = a1), and let D be obtained from C by adding m chords a;a2m+3—;
for 1 <i < m. We write D as @1az - .- G2m+1202m+3 - - - 201 and denote any graph
isomorphic to D by C3t. (See Figure 3.1 for C%;.) Observe that C3}. contains m + 1
nested cycles Coy, Cop—2, ..., Cog—2, simultaneously. Intuitively, C3} can be viewed
as a ladder with m rungs; our proof will rely heavily on such ladders. For any vertex
v on D, define vt := vg and v~ := v,. For any two vertices u and v on D, define
wDv = uCv and Dlu,v] := C[u,v], etc.

To establish the main result, we first show the existence of Cy, C¢, and one of C3,
C%,, and C%,. The following statement and its proof are inspired by its counterparts
on general graphs due to Reiman [5].

LEMMA 3.1. Let G = (V4, Vs, E) be a balanced bipartite graph with 2n vertices.
If [E| > n/2 (1 ++4n = 3), then G contains a Cy.

Proof. Suppose G contains no Cy. Consider triples of the form (z, {y, z}) such
that x € Vi, y, z € Vo with y # z, and that = is adjacent to both y and z. Since
G contains no Cy, each pair {y, 2z} gives rise to at most one such triple. Hence the
number of such triples is at most (}).

On the other hand, since each = € V; gives rise to exactly (")) such triples, the
number of triples of the above form is equal to Y-y, (44). Let o = Y wev, d(x)/n.
Then o = |E|/n. As the extended binomial coefficient (}) is a convex function, by
definition (§) < %Zze\/i (d(;)). So (%) < 1(%) and hence 02 —o—(n—1) < 0. Solving
this inequality yields ¢ < 1/2 (1 + /4n — 3). Therefore |E| < n/2(1+4n —3), a
contradiction. d

LEMMA 3.2. Let G = (V4, Vs, E) be a balanced bipartite graph with 2n vertices.
If B(G) > 3/2 and n > 3, then G contains a Cy.

Proof. By Lemma 2.8, we have §(G) > [(n + 3)/3]. This together with n > 3
implies

|E| > né > n[(n+3)/3] > 2(1 +/An —3).

Thus the statement follows instantly from Lemma 3.1. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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By Propositions 2.3 and 2.4, Cs and 3K, @ K have bipartite binding numbers 2
and 3/2, respectively, yet neither of them contains a Cy. So the figures in the above
lemma are both sharp.

LEMMA 3.3. Let G = (V1,V5, E) be a balanced bipartite graph with 2n vertices.
If B(G) > 3/2 and n > 10, then G contains a Cg.

Proof. By Lemma 3.2, G contains a cycle z1yijzeysx; of length 4 with X =
{z1,22} C Vi and Y = {y1,y2} C Vo. For i = 1,2, define X; = N(y;) — X and
Y, = N(z;) =Y.

Assume on the contrary that G contains no C¢. Then there is no edge between
X1 U X5 and Y7 UY;. Furthermore, x1 ¢ N(Y2) or y1 ¢ N(X2). Symmetry allows
us to assume that 1 ¢ N(Y2). Thus Y1 NY; = 0. By Lemma 2.8, we obtain
|X1| > [(n+3)/3] —2 = [(n —3)/3], and the same is true for |Y1| and |Y2|. Hence
Y1 UYal > 2[(n — 3)/3].

As X; is nonempty and X; N N(Y; UYs) = 0, we have

n > | X1+ |N(Y1 U3Y2)|
> [(n=3)/31+ 5 -2[(n - 3)/3],

son > 4[(n — 3)/3] + 1 and hence n > 4(n — 3)/3 + 1, which implies n < 9, a
contradiction. d

LEMMA 3.4. Let G = (V1,V5, E) be a balanced bipartite graph with 2n vertices.
If B(G) > 3/2 and n > 14, then G contains at least one of C%, C%,, and C%,.

Proof. Let D = T1y172Y223y371 be a C¢ in G; the existence of D is guaranteed by
Lemma 3.3. Recall the definition that x1y9 is an edge in D. Set X := {21, z2, 23} and
Y :={y1,y2,y3}. Symmetry allows us to assume that X C V; and Y C V;. Define
N1($3) = N($3)—Y, NQ(CE;;) = N(Nl ({E3))—X, and N3({E3) = N(NQ(CE:;))—Y Define
N;(ys) symmetrically for 1 < i < 3.

Assume on the contrary that G contains none of C2, C%,, and C%,. We propose
to show that

(3.1) N(N;(z3)) N N;(y3) =0 forall 1 <i, j <3.

Otherwise, let (z,7) be a pair such that N(N;(z3)) N N;(ys) # 0 and, subject to this,
i+ 7 is minimum. Then i = j (mod 2) and G[{z3,y3} U (U._; Ns(z3)) U (U_; Ne(y3))]
contains an (s, ys)-path 7 of length i + j + 1. It follows that y3T1y1T292237ys is a
Cgﬂ»ﬂ- in G, and this contradiction establishes (3.1).

By taking i = 7 = 1 in (3.1), we see that Na(z3) N Ny(y3) = 0, so y3 ¢ N(Na(z3)).
Repeated application of Lemma 2.8 yields

[Ni(zs)| = [(n+3)/3] = Y] = (n—6)/3,

[Na(23)| > [(n+ 2|Ni(xs)| + 1)/3] — |X| > (5n — 36)/9,

[N3(z3)| = [(n+2[Na(w3)| +1)/3] = [Y —{ys}| = (19n — 117)/27, and
IN(N3(23))| > [(n+2[N3(x3)| +1)/3] = (65n — 207)/81.

Similarly, |Ns(ys)| > (19n — 117)/27. In view of (3.1), N(Ns(z3)) and N3(y3) are
disjoint subsets of Vi, so |[N(Ns(z3))| + |N3(y3)| < n, which implies 41n < 558 and
hence n < 14, contradicting the hypothesis. O

Let us digress briefly to introduce a term and make some simple observations,
which will be used to show the existence of the aforementioned ladders.
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Let D = @yaz...agas...askar be a C3, where k > 4 and a; € Vi(D). A family
(Ao, Az, ..., Ap), with 2 <t < 4, of subsets of V(D) is called good if the following two
conditions are satisfied:

e AgUAT U---UAM C Vy(D) and

o Al ﬂAjj C{veVa(D): {v7v77} N Dlag,as] # 0} for all 0 < i < j < t.

LEMMA 3.5. Suppose (Ao, Ai,...,As) is good. Then the following statements
hold:

(i) Ift =4 and ag ¢ AF> N AT3, then |Ao] + X1, |As| <k +7.

(il) Ift € {2,3}, then Y'_ |As| <k + [5t/2].

Proof. Since (Ag, A1,...,As) is a good family of subsets of V(D), it is a routine
matter to check using the definition that (where A" exists only when ¢ > i for each i)

(1) AgN Af and Ag N AJ? are both subsets of {as, as,as};

(2) AN Agrg and Ag N Afl are both subsets of {as, a4, as,as};

(3) Af N AJ? is a subset of {a4, as};

(4) ATNAT?, AFPNAT?, AT NATY and AF2NAS* are all subsets of {ay, ag, ag};

and

(5) AF® N Af* is a subset of {ag,as}.

In the remainder of our proof, we use f(v) to denote the number of sets in {Ag, A5,
ATP AT} ift =4 and in {Ag, AT, ..., A} if t € {2,3} that contain a vertex v.
(i) By (4) and (5), ap is contained in at most one set in {AF% AF3 A}, so
f(az) < 2. By (5), we have f(as) < 3. By hypothesis, ag ¢ AF% N AF>.
So f(ag) < 3. From (1) we deduce that f(ag) < 3. For all vertices v €
Vo(D) — {az,a4,a6,as}, from (1), (2), (4), and (5) we see that f(v) < L.
Combining the above observations, we obtain

[ Aol + [AT? |+ [AT? |+ [AT = )0 flo) <[Va(D) +T=k+T.
veVa(D)

Thus (i) is established.

(ii) Let us consider the case when t = 2. By (3), we have ax ¢ A} N AJ?. So
flaz) < 2. Clearly, f(as) <3 and f(ag) < 3. Moreover, from (1) and (3) we
deduce that f(v) <1 for all v € Vo(D) — {aq, a4, as}. Hence

[ Aol + |AT |+ 1432 = D~ f(v) < [Va(D)| +5 =k + [5t/2].
veVa(D)

It remains to consider the case when ¢t = 3. By (3) and (4), ag is contained in at
most one set in {A], AJ% AT}, So f(as) < 2. Clearly, f(as) < 4 and f(ag) < 4.
From (1) and (3), we see that ag is contained in at most one set in {Ag, AT, A7},
so f(as) < 2. Moreover, for all vertices v € Vo(D) — {ag, a4, ap,as}, from (1)—(4) we
deduce that f(v) < 1. Therefore,

3
S TIAL= Y f(v) < Va(D)| +8 =k + [5t/2].
s=0 'UGV2(D)
This completes the proof of the present lemma. O

LEMMA 3.6. Let G = (V1,V5, E) be a balanced bipartite graph with 2n vertices,
let D = ayas...agay...asa1 be a C22k i G with k > 4, and let Xo, X1,...,X; be
disjoint subsets of V(G — D) with t € {3,4} such that
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(i) Xo = {0}, where {xg,a1} C Vi;

(i) |X1|=1ift=4; and

(111) Xl Q N(Xifl) fO’I“ 1 S ) S t.

Suppose u is a verter in Np(xo) — {ag,as}. Let Ag := Np(ut) — {ut?,ut2¢=2} and
A; = Np(X;) for 1 < i < t. If G contains none of Cyy_ o, Cay 4, and C3, ¢, then
(Ao, A1, ..., As) is a good family of subsets of V(D). _

Proof. Assume the contrary: there exist 0 < i < j <tand v € A;"i N A;” such
that {v=%, v=7} N Dlas,as] = 0. Set H := G — D.

Let us first consider the case when i = 0. Now v € Np(ut) — {ut2,u+2(t=2)}
v/ € Np(X;), and {v,v77} N Dlag,as] = 0. Observe that both u and v are in V5
and u ¢ D(v™7,v) (for otherwise v = v and j € {3,4}, a contradiction). Let x;
be a neighbor of v/ in X; and let P be an (zo, z;)-path of length j in H[W_,X,].
Since u € V(D) and v € Ay C Va(D) — {ut?,ut?t=2)}, we have v7 # u and
hence u ¢ D[v™7,v). This together with {v,v=7} N Dlas, as] = 0 implies that either
D[v=7,v] C Dlut,a;1] or D[v=7,v] C Dlag,u]. Therefore

D,_{m_ﬁmo?xw—jgumﬁal if D[v=7,v]

el , U [u+7al]a
aias .- .aGBU’jxj Pxouﬁmﬁﬁal if D[v=7,v]

cD
C Dlag, u)
is a C3,,, in G, contradicting the hypothesis.

Next, let us consider the case when ¢ > 1. Now v~ € Np(X;) and v™7 € Np(Xj).
Let x; be a neighbor of v™% in X; and let y; be a neighbor of v in X;. By (iii),
H[Ui_, 5X,] contains a path Q := 243742 ...x; of length i — (t — 3), where x5 € Xj
for t —3 < s < 4. Similarly, H[U£:t73XS] contains a path R := y;_3y;—2...y; of
length j — (¢t — 3), where y; € X, for t —3 < s < j. Since |X;—3| = 1, we have
Ti—3 = yi—3. Let £ be the largest subscript with t — 3 < £ < ¢ such that z, = y,.
Then 0 <i—¢ < (t—1)—(t—3) <2. Set § := xit_)xgﬁyj. Clearly, S is a path

in H{U_, ;X] of length j — i+ 2(i — £). Thus we obtain a Cz2k+2(i—e)+2 from D by
. . - .
replacing v/ Bv_z with v=7y; S z;v7", contradicting the hypothesis again. O

Our next two lemmas show that if G contains a Cj;, denoted by D, such that
G — D has a path with length at least three, then we can find a C3, in G based on
the above two lemmas for some ¢t with £k +1 <t <k + 3.

LEMMA 3.7. Let G = (V1,V5, E) be a balanced bipartite graph with 2n vertices,
let D = aqas...agay...asa1 be a CQQk i G, and let xori1x92374 be a path in G — D
such that Np(xg) — {as,as,a4,a5}+ # 0. If B(G) > 3/2, n > 139, and k > 4, then G
contains at least one of C22k+2, C§k+4, and C22k+6.

Proof. Assume on the contrary that

(3.2) G contains none of C3, ,,, Cay_ 4, and Csyg.

By Proposition 2.2, G is connected. Symmetry allows us to assume that xg and a; are
in the same color class of G, for otherwise rewrite D as b1bs...bgb7...borb1, where
b; =a7—; for 1 <i < 6. Then zy and by are in the same class, as desired. Renaming
subscripts of V;’s if necessary, we may assume that {zg,a;} C V5.

Let H =G — D and u € Np(zg) — {a2,a4}. Define X := {21}, Xo := {z2},
X3 = NH(;vg)—{xl}, X4 = NH(X3)—{$Q,$2}, and X5 = NH(X4)—(X3U{$1}) (see
Figure 3.2). Note that X;, X, X3, X4 and X5 are disjoint subsets of V(H) — {zo}.
By (3.2), we have Ng(u™) N (X; U X3U X5) = 0, so Ny(uT), X1, X3, and X5 are
disjoint subsets of Va(H ), which implies that [Ny (u™)| + [ X1] + | X3] + | X5| <n —k
and hence
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X3 X4 Xs

Fi1Gg. 3.2. D and X;’s.

(3.3) I[N (u)] + [N (z2)| + [Ner(Xa) — (X3 U{v1})| <n— k.
Set Ag := Np(ut) — {ut2,u™} and A; := Np(X;) for 1 <i < 4. By Lemma 3.6,
(3.4) (Ag, A1, As, A3, Ay) is a good family of subsets of V(D).
Observe that
(3.5) ag ¢ AF? N AL,

for otherwise a4 is adjacent to z2 and ag is adjacent to some vertex x4 in X3. It follows
that asasriroasasasDag is a 02219+2 in G, and this contradiction to (3.2) establishes
(3.5).

From (3.4), (3.5), and Lemma 3.5, we deduce that |Ap|+|Az|+|A3|+|A4] < k+7.
Hence

INp(uh)| + |[Np(22)| + |[Np(X3)| + [Np(Xa)| < k+ 9.
Adding this inequality to (3.3) yields
(3.6) IN(u™)] + [N (z2)] + [Np(X3)| + [N(X4)| = [X5] < 7+ 10.

By (3.2), we have Np(X3) C Vi(D)—{ut} and Np(X,) C Vo(D)— ({u=2,ut?} —
{az2,a4}), so IN(X;)| < n for i = 3,4. As |Xy| = |Nu(X3) — {zo,z2}| > |N(X3)| —
(INp(X3)| + 2), the triple (X,Y,t) = (X3, X4, |Np(X3)| + 2) satisfies the hypothesis
of Lemma 2.9 and hence

IN(X4)| > | X3|+ (2n +4)/5 — (INp(X3)| + 2).

Combining this inequality with (3.6) gives |N(u™t)| 4+ |N(22)| 4+ (2n —6)/5 < n + 10.
Thus, by Lemma 2.8 we obtain 2(n + 3)/3 + (2n — 6)/5 < n + 10, which implies
n < 138, and this contradiction completes the proof of our lemma. d

LEMMA 3.8. Let G = (V1,V5, E) be a balanced bipartite graph with 2n vertices,
let D = aias...agar...asaq be a 0221@ i G, and let xox1x273 be a path in G — D
such that Np(zo) — {az,as,a4,a5} # 0. If B(G) > 3/2, n > 139, and k > 4, then G
contains at least one of C22k+2, C§k+4, and C22k+6.
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Proof. Assume on the contrary that
(3.7) G contains none of C3,,,, Cay 4, and C3y¢.

By symmetry, we may assume that {zo,a;} C Vi. (See the first paragraph of the
proof of the preceding lemma.)

Let H =G — D and u € Np(zg) — {az,a4}. Define X7 := Np(zxo) — {z3},
X2 := Np(X;) — {20}, and X3 := Ny(X3) — X;. If there exists a vertex x4 in
Ny (x3) — {xo, 22}, then xgz1292524 would be a path in G — D and thus we reach a
contradiction to (3.7) by Lemma 3.7. Therefore

(38) NH($3) g {ﬁo,xg}.
Similarly,
(39) NH(X3) - {ﬁo} U Xo.

By (3.7), we have Ny(u™) N (X; U X3) = 0, so Ng(ut), X1, and X3 are disjoint
subsets of Vo(H). It follows that | Ny (u™)| + |X1] 4+ | X3] <n — k and hence

(3.10) |Nu(u®)| + [Nu(X2)| <n—F.

From Lemma 3.6, we see that (Np(u™)—{u*?}, Np(X1), Np(X2), Np(X3)) is a good
family of subsets of V(D). By Lemma 3.5, we thus obtain

(INp(u*)| = 1) +[Np(X1)| + [Np(X2)| + [Np(X5)| < & +8.
Adding this inequality to (3.10) yields
(3.11) At + [Np(X0)| + [N(Xa)| + [Np(Xs)| <1 +9.

In view of (3.7), we get Np(X;) C Vi(D) — {u"} and Np(X3) C Va(D) —
({u=2,u*?} —{az,a4}). Hence |[N(X;)| < nfori=1,2. As|Xa| = |Ny(X1)—{z0}| >
IN(X1)| — (|Np(X1)| + 1), the triple (X,Y,t) = (X1, X2, [Np(X1)| + 1) satisfies the
hypothesis of Lemma 2.9 and hence

IN(X2)| = [X1|+ (2n +4)/5 = (INp(X1)| + 1).
Combining this inequality with (3.11) gives
d(u®) + | X1+ (2n4+4)/5 — 1+ |Np(X3)| < n +9.

Using (3.8), we obtain |[Np(Xs)| > |Np(z3)| = |[N(zs)| — |[Nu(zs)| > d(z3) — 2,
so d(ut) + (2n 4+ 4)/5 + (d(z3) —2) < n+ 9. From Lemma 2.8, it follows that
n+3)/3+2n+4)/5+ (n+3)/3—2 < n+9. Therefore n < 123, and this
contradiction completes the proof of our lemma. O

4. A generalized bipartite hopping lemma. The hopping lemma was first
introduced by Woodall [8] in his proof of Theorem 1.1, which demonstrates that the
approach of iterating cycle exchanges can be highly effective for finding long cycles.
Variations of the lemma were subsequently developed by various authors for use in
different works. In particular, Ash [1] developed a basic version of the hopping lemma
for bipartite graphs.
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The following lemma is an extract of results from Ash [1] (see Lemmas 4.3, 4.4,
4.9, and 4.16; see also Jackson and Li [4]).

LEMMA 4.1 (Ash [1]). Let G = (V1,Va, E) be a bipartite graph, and let C' be a
longest cycle of G such that the number of components of G—C' is as small as possible
and, subject to this, a smallest component H of G— C' is as small as possible. Suppose
there exist a € Vi —V(C) and b € Vo —V(C) such that either a and b are both isolated
vertices in G — C or V(H) = {a,b}. For each vertex v in G — C, set Yo(v) := 0, and
define recursively sets X;(v) and Y;(v) for i > 1 by X;(v) := No(Yi—1(v) U {v}) and
Yi(v) :={yeC:y ,y" € X;(v)}. Set X, :=U;>1X;(v) and Y, := U;>1Y;(v). Then
the following statements hold:

(i) N(Y,) C X, forv € {a,b};

(i) XoNY, =0=X,NYy,;

(iil) | XN Xy <1 and |X; NXy| <1; and

(iv) X;ﬂXbZQ):Xa_ﬂXb ifabe E.

For convenience, set Cgk := (Cyy, for all k£ > 2. Observe that in Ash’s lemma C' is
assumed to be a longest cycle of G under certain restrictions, while in our proof we
need a generalized version which can be used to deal with the case when G contains
some C3} (not necessarily a longest one) but no C3}_ , for m > 0 under some other
restrictions. Let us now present this generalized bipartite hopping lemma, which
ensures that the ladder structure can be preserved when growing a cycle.

LEMMA 4.2. Let G = (V4,Va, E) be a bipartite graph, and let D = a1asz - - - Gam+2
2m+3 - - - a2ka1 be a CF in G with m > 0 and a1 € V1. Suppose G contains neither
C3h o mor another C3,, denoted by D', such that G — D' has fewer components than
G — D, and suppose there exist a € Vi — V(D) and b € Vo — V(D) such that both of
them are isolated vertices in G — D. For each vertex v in G — D, set Yy(v) := 0, and
define recursively sets X;(v) and Y;(v) for i > 1 by X;(v) := Np(Yi—1(v) U {v}) —
D(ay,aami2) and Y;(v) :=={y € D : y=,yT € X;(v)}, where D(ay,aoms2) = 0 if
m = 0. Set X, := U;>1X;(v) and Y, := U;>1Y;(v). Then the following statements
hold:

(i) N(Y,) C X, UD(a1,aam+2) for v € {a,b};

(i) XoNY, =0=XpNY,; and

(iii) | X N Xy <1 and [X; N X, < 1.

Since the proof of this lemma is very tedious, we postpone it till section 6 so
that the proof of our main theorem proceeds in a smoother and more coherent way.
Clearly, the following monotonicity property holds for the objects defined in the above
two lemmas:

(4.1) Xq(v) C Xa(w) C X3(v)C---C X, and Yi(v) CYa(v) CY3(v)C---CY,.

As an application of the above generalized bipartite hopping lemma, let us derive the
following statement, which will be used later.

LEMMA 4.3. Let G = (V1,V5, E) be a balanced bipartite graph with 2n vertices,
and let D = @1ay . .. G2m4202m+3 - - - G2ka1 be a CF) in G with m > 0. Suppose G does
not contain another C3y., denoted by D', such that G — D’ has fewer components than
G — D, and suppose there exist a € Vi — V(D) and b € Vo — V(D) such that both of
them are isolated vertices in G — D. If B(G) > 3/2 and m+2 <k <n—3m—1,
then G' contains a Cy, 5.

Proof. Assume the contrary: G containsno C3j, ,. Recall Lemma 4.2 and consider
the sets X;(a)™ and X;(a)~ fori > 1. By (4.1) and Lemma 4.2(iii), each of X;(a)™ and
X;(a)~ contains at most one vertex in X;(b). Hence | X;(a)* N X;(a)~| = | X;(a)T| +
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[ Xi(a)7|=|Xi(a)TUXi(a)™| > [Xi(a)T|+]Xi(a) | = [Vi(D) = Xi(b)| -2 = (2| Xi(a)| -
2) — (k — | X;(b)|). By the definition of Y;(a), we have

Yi(a)| > [Xi(a)" N Xi(a)"| = (2|X(a)] = 2) — (k — | X:(b)])-
Similarly,
Yi(b)| = [Xi(b)" N Xi(b) | > (2 X:(b)| — 2) = (k — [ Xi(a)]).
Adding these two inequalities yields
[Yi(a)| + |Yi(b)] > 3|X;(a)| + 3| Xi(b)] — 2k — 4.

From the definition, (4.1), and Lemma 4.2(ii), it is clear that Y;(a) C V4 (D) —
D(al, a2m+2) —Xl(b). As D(al, a2m+2)ﬂV1(D) 7& @ ifm > 1 and Xl(b) 75 (D ifm = 0,
we have Y;(a) # V1 (D). Therefore Y;(a) U {a} is a proper subset of V; for all 7 > 0.
Since a is an isolated vertex of G — D, from the definition, (4.1), and Lemma 4.2(i),
we deduce that N(Y;_1(a) U{a}) C X;(a) U (Vo N D(a1,azm+2)). This together with
Lemma 2.8 implies that

n+2[Yi1(a)| +3
3 3

50 3|X;(a)| > n+2|Yi—1(a)| —3(m—1). Similarly, 3|X;(b)| > n+2|Y;—1(b)| —3(m—1).
Hence

[ Xi(a)] +m = [N(Yi-1(a) U{a})| =

[Yi(a)| + [Yi(b)] > 2n + 2|Yi—1(a)| + 2|Yi—1(b)] — 6(m — 1) — 2k — 4
=2(|Yi—1(a)| + |Yic1(®))) + 2(n — k) — 6m + 2
>2(|Yi—1(a)[ +[Yi—1 (D)) +4 (ask <n—3m—1),

which implies
Yi(a)| + [Yi(0)| + 4 > 2([Yim1(a)| + [Yiea (D) +4).

Since Yy(a) = Yy(b) = 0, it follows that |Y;(a)| + |Y;(b)| + 4 > 2¢72 for all i > 1, and
hence |Y;(a)| + |Yi(b)| = oo as i — oo, which is absurd. O

5. Proof of Theorem 1.3. The proof of our theorem comes in three steps, and
different steps require different counting techniques. Actually we have already carried
out step 1 in section 3 by showing the existence of Cy, C} and one of C3, C%), and
C%, in G. Based on such a ladder and Lemma 4.3, we can now proceed to step 2,
which aims to prove that G contains a Cy for every k with 2 < k <n — 6.

LEMMA 5.1. Let G = (V1, Vo, E) be a balanced bipartite graph with 2n vertices
and with a C%,. If B(G) > 3/2,n > 139, and 4 < k < n—7, then G contains at least
one of C3, .. Cap. 14, and C3 4.

Proof. By hypothesis, G contains a subgraph D = ajaz...agar...aa1 (with
a1 € Vi), which is a C3,. Assume on the contrary that G contains none of C3, ,,,
C3. 44, and C2. 4¢- Let us make some simple observations about G — D.

Claim 1. No component H of G — D satisfies min{|V1(H)|, |Va(H)|} > 2.

Suppose for a contradiction that min{|Vy(H)|, |Va(H)|} > 2 for some component
H of G — D. Then H contains a path zozizoxs with z¢p € Vi(H). By Lemma 3.8,
we have Np(zo) UNp(xs) C Dlag,as], so Np(zo) C {az,a4} and Np(x3) C {as,as}.
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Using Lemma 2.8, we obtain |[Ng(z;)| = d(x;) — |[Np(x;)| > (n — 3)/3 for i = 0,3.
Thus |V;(H)| > (n—3)/3 > 45 for i = 1,2.

Symmetry allows us to assume that |Vi(H)| > |Vo(H)|. Let us show that there
exist two distinct vertices v; and ve in V4 (H) such that

(5.1) Np(vi) — {az,as} # 0 for i =1,2.

Otherwise, there is a subset X of V1 (H) with |X| > |V4(H)| — 1 such that Np(X) C
{az2,a4}. So |[N(X)| < n and hence |[Ny(X)| = [N(X)| - |[Np(X)| > 3|X|/2—-2 >
BVi(H)| —7)/2 > (3|Va(H)| — 7)/2 > |Va(H)| as Va(H) > 45, a contradiction.
Therefore (5.1) is true.

Set A := Npg(v1) and B := Ng(A) — {v1}. If Ng(B) — A contains a vertex z,
then letting y € Np(z) and © € Na(y), the path vyxyz is fully contained in G — D,
contradicting Lemma 3.8. So Ny (B) C A, which in turn implies Vi (H) = BU {v1}
and Vo(H) = A. Hence |A] > (n —3)/3 > 45 and vo € B. Let us € Na(v2) and
u; € A —{uz}. Then vausviuy is a path in G — D, which contradicts Lemma 3.8. So
Claim 1 is justified.

Claim 2. Each component of G — D contains at most two vertices.

Suppose the contrary: some component H of G — D has at least three vertices.
By Claim 1, we have min{|V1(H)|, |Va(H)|} < 1. So H is a star. By symmetry,
we may assume that Vi (H) = {x1,22,...,2,} and Va(H) = {y}, where r > 2. Set
X :=Vi(H) — {a1}. Since G contains no C3, , ,,

Np(z1) N N (y) C {az, ae},
Np(z1) N NA*(X) C {ag, a4, a6}, and
NE(y) N NSH(X) € {as, ac}

So each of as and a4 is contained in at most two sets in {Np(z1), N)2(X), N (y)}.
Consequently, |Np(z1)| + [N (y)| + INH2(X)| < |[Va(D) — {az,a4,a6}| + 7 = k + 4.
By Lemma 2.8, we have |[Np(z1)| = |[N(z1) — {y}| > n/3, |[Np(y)| = |[N(y)| —r >
(n+3)/3—=r,and |[Np(X)| = |N(X)—{y}| > (n+2|X|+1)/3—1=(n+2r—4)/3.
Therefore, n/3 + (n+3)/3 —r + (n + 2r — 4)/3 < k + 4, which implies that 3n <
3k+r+13 < n+2k+ 13 and hence k > n — 7, contradicting the hypothesis. This
proves Claim 2.

Claim 3. G — D contains at most one isolated edge.

To justify this, we assume that both z;y; and x5y, are two isolated edges of G—D
with {z1,22} C V4 and {y1,y2} C Va. We propose to show that

(52) ND(xl) N Ng2(x2) g {a25a4)a6}
or  Np(y1) NN (y2) C {as, as,ar}.

Suppose not. Then there exist two vertices v1 € Np(z1) N NEZ({EQ) — {az, a4, a6}
and vy € Np(y1) N Ng2(y2) —{as,as,ar}. By symmetry, we may assume that v; €
D(va,a1). If vo = vy, then by replacing vy v1 with v; y1z1v;1 in D, we get a C§k+2 in
G, and this contradiction implies that vy # v . So va € D(vy 2, v ] € D(az, vy ). Tt
follows that

—_— —2 —2
aias. .. a6a73v2 Y220, 51)2241331’()13&1

isa C3,,, in G, a contradiction. So (5.2) holds.
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By symmetry, we may assume that
(5.3) Np(z1) N NA2(w2) C {as, as, ae}-

. . 2
Since G' contains no C3, 5, clearly we have

(5.4) Np(z1) N N (y1) € {az, a6}
Moreover,
(5.5) INp(y1)* N NB?(22) — {as, a6}| < 1,

for otherwise, let {u1,us} € Np(y1)N N}, (z2) such that {u1,us}N{as,as} = 0, where
us € D(uy,a1]. Then

mﬁuf TolUy 5u1y1 U9 Bal

is a C3,,, in G, a contradiction. Let z be the vertex in Np(y1)* N Nj*(a2) —
{a4,a¢}, if any. Then each of as and a4 is contained in at most two of the sets in
{Np(21), Np(y1)*, Njy?(x2)—{z}}. Consequently, [Np (x1)|+|Np (y1)|+(IN5? (22)|—
1) < |Va(D) — {agz,a4,a6}| + 7 =k + 4. By Lemma 2.8, we have [Np(y1)| = |N(y1) —
{z1}| > n/3, and the same holds for [Np(z;)| for i = 1,2. Thus 3(n/3) -1 <k +4
and hence k > n — 5, contradicting the hypothesis. So Claim 3 is established.

Now let D be a Cj, in G such that the number of components of G — D is as
small as possible. Recall that 4 < &k < n — 7. By Claims 2 and 3, G — D contains
two isolated vertices a € Vi — V(D) and b € V5 — V(D). From Lemma 4.3 (with
m = 2), we see that G contains a C3, , ,. This contradiction completes the proof of our
lemma. d

The objective of step 3 is to show that every Cyi, with n —6 < k <n —1, can be
extended to a Cogyo in G.

LEMMA 5.2. Let G = (V1, Vo, E) be a balanced bipartite graph with 2n vertices
and with a Coy,. If B(G) > 3/2,n > 139, andn—6 <k <n —1, then G contains a
Cokq2.

Proof. Assume on the contrary that G contains no Ca1o. Let C be a Cyi in G
such that the number of components of G — C' is as small as possible. Let us make
some simple observations about G — C.

Claim 1. G — C contains no path of length 3.

Suppose the contrary: xoxizazs is a path in G—C. By symmetry, we may assume
that xo € V. Since G contains no Coy12, we deduce that No(zo), Nér(xl), Néiz(xg),
and N3 (x3) are disjoint subsets of V;(C). Hence

INc(20)| + NG (z1)] + NG (22)] + N3 (23)] < k.

By Lemma 2.8, we have |Na(x;)| > d(x;)—(n—k) > (n+3)/3—(n—k) = (3k—2n+3)/3
for 0 <4 < 3. Tt follows that 4(3k —2n+3)/3 <k, so 8n > 9k + 12 > 9(n — 6) + 12
and hence n < 42, contradicting the hypothesis. Thus Claim 1 is justified.

Claim 2. Each component of G — C' contains at most two vertices.

Otherwise, some component H of G — C has at least three vertices. By Claim 1,
H contains no path of length 3. Hence at least one of V4 (H) and V(H) contains only
one vertex. Symmetry allows us to assume that Vo(H) = {u}. Then all vertices in
Vi(H) are adjacent to u. Let v be a vertex in V1 (H) and set X := V1 (H) —{v}. Since
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G contains no Coy 2, we see that Nér(u), Ne(v), and NZ?(X) are disjoint subsets of
Va(C). So |NZ (w)| + |Ne(v)| + [NE?(X)| < k and hence

(5.6) (d(u) —7) + (d(v) = 1) + (IN(X)[ = 1) <k,

where r := |V1(H)|. By Lemma 2.8, we have |[N(X)| > (n+2|X|+1)/3 = (n+2r—1)/3
and min{d(u),d(v)} > (n+ 3)/3. This together with (5.6) implies 3n < 3k+r+1 <
n+2k+1,so k> n—1 and hence kK = n, and this contradiction justifies Claim 2.

Claim 3. G — C contains at most one isolated edge.

Assume on the contrary that z1y; and x4y, are two isolated edges of G — C with
{z1,22} € V7 and {y1,y2} € Vo. Then k < n — 2. Since G contains no Caiya,
we have Neo(x;) N NZ(y;) = 0 for i = 1,2. It is easy to see that at least one of
Ne(z1) N NE2(22) and Ne(y1) N NE2(ye) is empty, for otherwise G would contain
a Cojta, a contradiction. Symmetry allows us to assume that Ne(z1) N N&?(z2) =
0. Then k > |No(a1) U NG2(@s) U NG (y1)] = [No(ay)| + ING2(x2) U NG (31)] =
INc(21)] + |NG2(z2)| + NS (y1)| — ING2(22) N N (y1)]. By Lemma 2.8, each of
INc(z1)], ING(y1)], and |NA?(z2)| is at least n/3. Hence |NZ&2(22) N Ng(y1)| >
n — k > 2, which again implies the existence of Cy;42 in G. This contradiction
establishes Claim 3.

Claim 4. G — C contains no isolated vertex.

Otherwise, by Claim 2, there exist a € V7 — V(C) and b € Vo — V(C) such that
both of them are isolated vertices in G—C' (as G is balanced). From Lemma 4.3 (with
m = 0), it follows instantly that G contains a Caky2, and this contradiction proves
Claim 4.

From Claims 1-4, we deduce that G — C' contains only two vertices, say, a and b,
with @ € V3 and b € V5, and that ab € E. This in turn implies that C' is a longest
cycle in G. Thus Lemma 4.1 is applicable to the triple (C;a,b). For each i > 1 and
v € {a,b}, let X;(v) and Y;(v) be as defined in this lemma. By definition, (4.1) and
Lemma 4.1(ii), Y;(a) C V1(C) — X1(b). Hence Y;(a) U {a} is a proper subset of V; for
all > 0. Similarly, Y;(b) U {b} is a proper subset of V4 for all ¢ > 0. Therefore, for
i>1and v € {a,b}, Lemma 2.8 applies to S = Y;_1(v)U{v}. As each of a and b has
exactly one neighbor outside C, we have

St 2(Yisa(w)[+ D) +1 Lot 2[Yi—1(v)]

- 3 B 3 '

Thus 3|X;(v)| > n+2|Y;_1(v)|. By (4.1) and Lemma 4.1(iv), both X;(a)" and X;(a)™
are subsets of V1(C) — X;(b). So | X;(a)TNX;(a)™| = | Xi(a)T|+|Xs(a)"| = | Xi(a)T U
Xi(a)~| > 2|X;(a)| — (k — | X;(D)]). As X;(a)™ N X;(a)” C Yi(a), we have

[ Xi(v)]

Yi(a)| = 2|1Xi(a)| = (k = [Xi(D)])-
Similarly, |Y;(b)| > 2|X;(b)| — (k — | X;(a)|). Adding these two inequalities yields
Yi(a)| + [Yi(b)] = 3| Xi(a)| + 3| X:(b)| — 2k.
Hence

[Yi(a)| +Yi(b)] > (2n + 2|Yi_1(a)| + 2]Y;—1(b)]) — 2k
=2(|Yi—1(a)| + [Yi=1(0)]) + 2(n — k)
>2([Yi—1(a)| + [Yi—1(0)]) + 2,
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which implies
Yi(a)| +[Yi(b)| + 2 = 2(|Yi-1(a)| + [Yi—1 (D) +2).

Therefore, |Y;(a)| + |Y;(b)| +2 > 20+ — o0 as @ — oo. This contradiction completes
the proof of our lemma. a

Now we are ready to establish the main result of this paper.

Proof of Theorem 1.3. By Lemmas 3.2-3.4, G contains a Cy, a C}, and at least
one of C3, C%,, and C%,. By Lemma 5.1, if G contains a C%, for any k with 4 <
k < mn —7, then G contains at least one of C3,,, C3,.,,, and C3,_ 4. Recall that
every C’22,5 with ¢ > 4 contains cycles Co, Cot_o, and Coy_4 simultaneously. From
all these observations, we conclude that G contains a cycle Cy for every k with
2 < k < n—6. This together with Lemma 5.2 implies that G contains a Cyy, for every
k with 2 < k < n. Therefore G is bipancyclic. O

6. Proof of Lemma 4.2. As stated before, Lemma 4.1 aims to deal with a
longest cycle under certain restrictions, while Lemma 4.2 is intended for a ladder (not
necessarily a longest one) under some other restrictions. Nevertheless, the basic ideas
underlying their proofs are essentially similar, and their origin can be traced back to
Woodall [8].

The proof of Lemma 4.2 is based on the four claims A(4, 5), B(¢,7), B*(4,7), and
C(3) for all natural numbers i and j.

Claim A(i,7).  There do not exist two disjoint paths Pj; = wjuz...uy and
Qij = uyy1usy2 ... ug with the following properties:

(P1) a1 Dagmy2 is a subpath of either P;; or Q;; when m > 1;

(P2) {ur,ugsn} € Xifa) and fug,ug} © X,(0)

(P3) if us € Yy,(a) for some h < i and s ¢ {f, g}, then {us_1,us11} C Xn(a);

(P4) if us € Y, (D) for some h < j and s ¢ {1, f + 1}, then {us_1,usy1} C Xp(b);
and

(P5) either V(P;;) UV (Qi;) = V(D) or V(P;) UV(Q45) = V(D) — {aog,bo} for
some a9 € V1(D) —Y;_1(a) and by € Vo(D) —Y;_1(b) such that agby € E(G).

Claim B(i,j). There does not exist a path R;; = ujus...us with the following

properties:
(R1) a Bangrg is a subpath of R;; when m > 1;
(R2) {ur,ur} C X,(a):
(R3) if us € Yy (a) for some h < i, then {us—1,ust1} C Xp(a);
(R4) if us € Y3 (b) for some h < j and s ¢ {1, f}, then {us_1,us+1} C Xp(b); and
(R5) V(Rsj) = V(D) — {ao} for some ag € X;(b).
Claim B*(z 7). There does not exist a path R; = ujuz...us with the following
properties:
(r1) a1 Dagpy2 is a subpath of Rj; when m > 1;
(2) {ur,us) € X, (b);
(r3) if us € Yi(b) for some h < j, then {us_1,us11} C Xp(b);
(r4) if us € Yy (a) for some h < i and s ¢ {1, f}, then {us_1,usy1} C Xp(a); and
(r5) V(R};) = V(D) — {bo} for some by € X;(a).
Claim C’( ). For each v € {a, b}, there does not exist a path T; = uqus ... uy with
the following properties:
(T1) a1§a2m+2 is a subpath of T; when m > 1;
(T2) {ur,ur} C X,(v);
(T3) if us € Yy (v) for some h < ¢ and s ¢ {1, f}, then {us—1,us+1} C Xp(v); and
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(T4) V(T;) = V(D)—{wo} for some vy € V(D)—Y;_1(v) with N(vg) € V(D)U{v}.
Observe that if m > 1, then

(6.1) Y;(v) N Dla1, azm+2] =0 for each v € {a,b} and j > 1,

because X (v) N D]az, azm+1] = 0. We shall repeatedly use this simple observation in

the subsequent proofs.

Proof of Lemma 4.2. (assuming Claims A(i, j), B(4,j), B*(i,7), and C(4) for all
¢ and 7).

(i) Suppose the contrary: N(Y,) is not a subset of X,,UD(a1, asm+2) for v =a or
b. By definition, we have N(Y;(v)) € X;+1(v) U D(a1, agm+2) for some ¢ > 1.
So N(Y;(v)) € V(D) and hence N(vg) ¢ V(D) for some vy € Y;(v). In view
of (6.1), we obtain vy ¢ D[a1,azm+2] when m > 1. Note that Y, and v are
both contained in Vj for j =1 or 2, so N(vg) € V(D) U {v}. As Yy(v) =0,
there exists a subscript h with 1 < h < ¢ such that vy € Y, (v) — Y1 (v).
Thus {vy,vd } € Xn(v), and vy € V(D) — Yj,_1(v). Setting T}, := v Dy,
we see that conditions (T1)—(T4) (with h in place of ¢) are all satisfied by T},
and hence Claim C(h) is violated. This contradiction implies that N(Y,) C
X, UD(ay,agmy2) for v =a and b.

(ii) Suppose u € X;(b) NY;(a) for some subscripts ¢ and j. Then {u~,ut} C
Xi(a). By (6.1), u ¢ Dlai,asm42] if m > 1. Setting ap := v and R;; :=
ut Du~, we see that conditions (R1)-(R5) are all satisfied by R;;, so Claim
B(i,7) is violated. Hence X,;(b) NY;(a) = 0 for all subscripts ¢ and j, which
implies that X, N'Y, = (). Similarly, from Claim B*(i,j) we can deduce that
Xi(a) NY;(b) = 0 for all subscripts ¢ and j, and hence X, NY; = 0.

(iii) Suppose u and v are two distinct vertices in X N X;. Then there exist
subscripts ¢ and j such that {u=,v"} C X;(a) and {u,v} C X;(b). As
none of u~, u, v, and v is contained in Dlag, az2m+1] when m > 1, either
Dla1, a2m+2] € D[u,v~] or Dla1,asm+2] € D[v,u”]. Setting P;; := u_gv
and Q;; := v~ Du, we see that conditions (P1)—(P5) are all satisfied by P,
and @;;, and hence Claim A(%,j) is violated. This contradiction implies
that | X N Xp| < 1. Similarly, we have | X, N X;| < 1. So the lemma is
established. O

From the preceding proof, we conclude that

Z1) Claim A(4, j) implies that | X;(a)* N X;(b)| <1 and |X;(a)” N X;(b)] < 1;

Z2) Claim B(i,j) implies that X;(b) NY;(a) = 0;

Z3) Claim B*(4, j) implies that X (a) NY;(b) = 0; and

Z4) Claims C(h), for all h with 1 < h < ¢, imply that N(Y;(v)) € X;41(v) U
D(ay,a2m+2) for v € {a,b}.

We shall appeal to these observations in the following inductive proof of the above

claims for all possible subscripts.

Proof of Claims A(1,1), B(1,1), B*(1,1), and C(1). Suppose such paths P;; and
Q11 exist. Then a is adjacent to u; and us41, and b is adjacent to uy and ug. If
V(P11) UV(Q11) = V(D), then we can obtain a C3}_ , from D by adding a and b, a
contradiction. If VI(P11)UV(Q11) = V(D) —{ao, bo} for some ag € V41(D)—Yy(a) and
by € Va(D) — Yy(b) such that apby € E(G). Then we can get another C3}, denoted
by D’, on the vertex set (V (D) — {ag,bo}) U{a,b} such that G — D’ has at least one
component fewer than G — D, because both a and b are isolated vertices in G — D,
while apbp € E(G). This contradiction justifies Claim A(1,1).

AA,_\,_\
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Suppose such a path Rq; exists. Then a is adjacent to u; and uy, and V(R11) =
V(D) — {ao} for some ag € X;(b) (so apb € E(G)). Hence we can obtain another
C3}, denoted by D', on the vertex set (V(D) — {ao}) U {a} such that G — D’ has at
least one component fewer than G — D, because both a and b are isolated vertices in
G — D, while apb € E(G). This contradiction justifies Claim B(1,1). Similarly, Claim
B*(1,1) also holds.

Suppose such a path T exists. Then v is adjacent to u; and uy, and V(1) =
V(D) — {vo} for some vy € V(D) with N(vg) € V(D) U {v}. Hence we can obtain
another CJ}., denoted by D’, on the vertex set (V(D) — {vo}) U {v} such that G — D’
has at least one component fewer than G — D, because v is an isolated vertex in G — D
while N(vg) € V(D) U {v} = V(D') U {vg}. This contradiction justifies Claim C'(1).

Proof of Claims A(3, j), B(i,7), and B*(4, j) for i+j > 2. We proceed by induction
on i+ j. Suppose i + j > 2 and A(ig, jo), B(io,jo), B*(i0,jo) hold for all subscripts
ip and Jo with g +jo<t+7.

(1) To prove A(i,j), suppose on the contrary that such paths P;; and Q;; exist.
By symmetry, we may assume that ¢ > j (so ¢ > 1). Let us distinguish among three
cases.

Case Al. {uy,upi1} C Xi—1(a).

In this case let P;_1; := P;; and Q;—1,; := @;;. Then the existence of such two
paths contradicts Claim A(z — 1, j).

Case A2. Precisely one of u; and uypyq is in X;—1(a).

In this case symmetry allows us to assume that uq € X,;_1(a), while usy1 ¢
X;—1(a). Then uyi; is adjacent to some y € Y;_1(a) — Yi_o(a). If y ¢ V(P;; U Qyj),
then, by (P5), we have V(P;; U Q) = V(D) — {ao,bo} and y € {ao,bo}, where
ap € Vi(D) —Y;_1(a) and by € Vo(D) — Y;_1(b). It follows that y = ao ¢ Yi—1(a), a
contradiction. Hence y = uy for some s with 1 < s < g. By (6.1), us ¢ Dla1, a2m+2]
when m > 1. By Claim B(i — 1,5) and (Z2), X;(b) N Yi—1(a) = 0, so s ¢ {f,g}.
As {u1,uf41} C Xi(a), we see that uy € Vo and us € N(usgqp1) € Vi, and hence
s ¢ {1, f + 1}. Consequently, either 1 < s < for f+ 1< s < g. By (P3), we have
{us,l, US+1} - Xi,l(a). Set

— —
P ur Pijusuypi1Qijug ifl<s<f,
B ifft1<s<g,

—

Q Usy1Pijuy ifl<s<f,
1= — :

R us_lajuﬁlus@ijug iff+l<s<g.

Let us show that (P1)-(P5) (with ¢ — 1 in place of i) are all satisfied by P;_1 ; and
Qi—1,5.- Suppose 1 < s < f. Then the details of the proof are given below.

(P1) As us ¢ Dla1, aam+2], it is clear that a13a2m+2 remains a subpath of either
Pi—l,j or Qi—l,j when m Z 1.

(P2) By assumption, u1 € X;_1(a) and {uys,us} C X;(b). As remarked above,
Ug—1 € Xi,l(a).

(P3) Since P;; and Q;; satisfy (P3), the only possible vertex on P_;; U Qi—1;
that can violate (P3) is u,. However, since us ¢ Y;_2(a), we have us ¢ Y3 (a)
for all h < i —1 by (4.1).

(P4) Since P;; and Q;; satisfy (P4), the only possible vertex on P;_; ;UQ;_1 ; that
can violate (P4) is uyyi. However, since Claim B(i — 1, ) implies X;(b) N
Yi—1(a) = 0 (recall (Z2)), we have us ¢ X;(b). This together with usiius €
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E(G) and us € V(D) — D(a1, Gam+2) implies ury1 ¢ Y;_1(b), and hence
upi1 ¢ Yi(b) for all h < j by (4.1).

(P5) This follows from the fact that V(P;; U Qi;) = V(Pi—1,; U Qi—1,5) and that
P;; and Q;; satisfy (P5). Also, if P;; and @Q;; miss ag € Vi(D) — Yi_1(a),
then we have ag € V(D) — Y;_2(a) as well by (4.1).

The proof goes along the same line when f+1 < s < g.

Case A3. {ur,upi1}NXi—1(a) =0.

As in Case A2, we can now deduce that u; is adjacent to some u, € Y;_1(a) —
Yi_2(a), and uysy; is adjacent to some us € Y;_q1(a) — Yi—2(a), where 2 <r,s <g—1
and {r,s} N{f, f+1} = 0. By (P3), we have {u,_1,Up41,Us—1,us+1} € X;_1(a).
By (6.1), we obtain {u,,us} N Dla1, azm+2] = O when m > 1. Symmetry allows us
to assume that u, € F;; whenever u, = u, and » < s whenever u, and us are two
distinct vertices both on F;; or both on @;;. Thus there are four possibilities for r
and s altogether: () I<r< f<f+l<s<gi(ii)l<s<f<f+1<r<yg; (i)
l<r<s<fjor(iv) f+1<r<s<g. Set

_>
Up_1 ijulurPijuf if1<7‘<f<f+1<s<g,
_>
P ur,lajuﬂlusf’ijuf fl<s<f<f4+l<r<y,
1= Y :
R Usr1Piuy ifl<r<s<f,
= — )
us—1Qijurur Pijuyg if f+rl<r<s<uyg,
— — ,
UsleijUdeEQijug fl<r<f<f4+l<s<y,
us—1Pijuru,Qijug fl<s<f<f4+l<r<yg,
Qi1 = 2y ,
Ur—1 Pyjuiuy Pijusupi1Qijug if 1 <r<s<f,
<= — )
Up—1QijUp 1 1Us Qg ff+l<r<s<ag.

Again, it is a routine matter to check that (P;,_1 j,Q;—1,;) satisfies (P1)-(P5) (with
i — 1 in place of 7). This contradiction to Claim A(: — 1, j) completes the proof for
the present case. Therefore Claim A(4, j) is established.

(2) Let us now justify Claims B(1,j) for j > 1. Assume such a path R;; exists
with corresponding ag € X;(b). Then ag ¢ X;_1(b), for otherwise Claim B(1,j — 1)
is violated. Hence ag is adjacent to some u, € Y;_1(b) — Y;_2(b), where 1 < r < f.
By Claim B*(1,j — 1) and (Z3), we have Y;_1(b) N X1(a) = 0, so u, ¢ X1(a). This
together with {u;,us} C Xi(a) implies 1 < r < f. By (R4), {ur—1,ur41} € X;-1(D).
By (6.1), we have u, ¢ Dla1,a2m+2] when m > 1. Let P ;-1 := wiUa...Ur_1,
Q1,j—1 = UfUf_1...Upt1, and by := u,. Then it is easy to see that (P1)-(P5) (with
(1,7 — 1) in place of (4, 7)) are all satisfied by (P1 j_1,@Q1,j—1). This contradiction to
Claim A(1,j — 1) establishes Claim B(1,7) for all j > 1.

Similarly, we can justify Claim B*(1,j) for all j > 1.

(3) Next, let us justify Claim B(3,j) for ¢ > 1. Assume such a path R;; exists
with corresponding ag € X;(b). We consider three cases.

Case B1. {u1,us} C X;_1(a).

In this case set R;_1 ; := R;;. Then the existence of this path contradicts Claim
B(i—1,7).

Case B2. Precisely one of u; and uy is in X;_1(a).

In this case symmetry allows us to assume that u; € X;_1(a) while uy ¢ X;_1(a).
Then uy is adjacent to some y € Y;_1(a) — Y;_2(a). By Claim B(i — 1,5) and (Z22),
we have X;(b) NY;_1(a) = 0, so y # ap, for otherwise ap € X;(b) NY;_1(a), a
contradiction. In view of (R5), we have V(D) = V(R;;) U{ao}, so y € V(R;;) and
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hence y = u, for some r with 1 <r < f. By (6.1), we get u, ¢ Dla1, Gom+2] when
m > 1. As {u,us} C X;(a) € Vo and u, € N(uy) C Vi, we obtain 1 < r < f.
It follows from (R3) that u,41 € X;—1(a). Let Ri_1j := wiug. .. UplUfUp_1... Upt1.
Then (R1)-(R5) (with ¢ — 1 in place of ¢) are all satisfied by R;_1 ;; the details of the
proof are given below.

(R1) Since u, ¢ Dla1,agmy2], it is clear that alﬁangrg remains a subpath of
Ri—l,j when m > 1.

(R2) By assumption, u; € X;_1(a). As remarked above, u,+1 € X;_1(a).

(R3) Since R;; satisfies (R3), the only possible vertex on R;_1 ; that can violate
(R3) is u,. However, since u, ¢ Y;_2(a), we have u, ¢ Yj,(a) forall h <i—1
by (4.1).

(R4) Since R;; satisfies (R4), the only possible vertex on R;_;; that can vio-
late (R4) is uy. However, by Claim B(: — 1,j) and (Z2), we have X;(b) N
Yi—i(a) = 0, so u, ¢ X;(b). This together with usu, € E(G) and u, €
V(D) — D(a1,a2m+2) implies uy ¢ Y;_1(b), and hence uy ¢ Y (b) for all
h < j by (4.1).

(R5) This follows from the fact that V(R;;) = V(R;—1,;) and that R;; satisfies
(R5).

Therefore the existence of R;_; ; contradicts Claim B(:i — 1, 7).

Case B3. {u1,us} N X;_1(a) = 0.

As in Case B2, we can now deduce that u; is adjacent to some u,, and uy is
adjacent to some u,, where {us,u,} C Y;_1(a) — Yi—2(a) and 1 < s,r < f. By
(R3), we have {up—_1,Urt1,us—1,us+1} € Xi—1(a). By (6.1), we obtain {u,,us} N
Dlay, azm+2] = 0 when m > 1. Set

— .
. Us— 1 5u1us Ry uru p 55U g1 if r > s,
Ri1j:= = .
Up—1 ijulusRijufurRijus,l if r <s.

It is then a routine matter to check that (R1)—(R5) (with ¢ — 1 in place of ¢) are all
satisfied by R;_1 ;. Thus the existence of R;_; ; contradicts Claim B(i — 1, j).

Similarly, we can justify Claim B*(4, ) for all i > 1.

Proof of Claim C(i) for ¢ > 1. We proceed by induction on i. Suppose i > 1 and
C'(ig) holds for all iy with 1 < iy < i. To prove C(i), assume on the contrary that
such a path T; exists with corresponding vo ¢ Y;—_1(v) such that N(vg) € V(D) U{v},
where v € {a,b}. We consider three cases.

Case C1. {uy,ur} C X;—1(v).

In this case set T;_1 := T;. Then the existence of this path contradicts Claim
C(i—1).

Case C2. Precisely one of u; and uy is in X;_1(v).

In this case symmetry allows us to assume that u; € X;_1(v) while uy ¢ X;_1(v).
Then uy is adjacent to some y € Y;_1(v) — Y;_2(v). As vy ¢ Y;_1(v), we have y # vo.
Using (T4), we see that y € V(T;), so y = u, for some r with 1 <r < f. In view of
(6.1), we obtain u, ¢ Dla1,azm+2] when m > 1. Since both u; and uy are in V; for
it =1 or 2, we deduce that 1 < r < f. Using (T3), we get {u,—1,ur41} C X;-1(v).
Let Tj—1 := w1t . . . UpUfUyp_1 ... Up41. We can now show that (T1)—(T4) (with i —1
in place of i) are all satisfied by T;_1; the details of the proof are given below.

(T1) Since u, ¢ Dla1, agam+2], it is clear that a13a2m+2 must remain a subpath
of T;_1 when m > 1.
(T2) By assumption, u; € X;_1(v). As noted above, u,4+1 € X;_1(v).
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(T3) Since T; satisfies (T3), the only possible vertex on T;_; that can violate (T3)
is u,. However, since u, ¢ Y;_s(v), we have u, ¢ Y,(v) for all h < i—1 by
(4.1).
(T4) This follows from the fact that V(T;) = V(T;—1) and that T; satisfies (T4).
As vg ¢ Y;_1(v), we have vy ¢ Y;_2(v) as well by (4.1).
Hence the existence of T;_1 contradicts Claim C(i — 1).

Case C3. {ur,ur} N X;—1(v) = 0.

As in Case C2, we can now deduce that u; is adjacent to some u,, and uy is
adjacent to some u,, where {us,u.} C Y;_1(v) — Y;_2(v) and 1 < s,r < f. By
(T3), we have {ur_1,urs1,us—1,us+1} C X;—1(a). By (6.1), we obtain {u,,us} N
Dlay, azm+2] = 0 when m > 1. Set

usflﬁulusﬁurufﬁurﬂ ifr > s,

T 1:=
Up—_1 iulusﬁufur PlUs_1 if r <s.

It is then a routine matter to check that (T1)—(T4) (with ¢ — 1 in place of i) are all
satisfied by T;_1. Thus the existence of T;_; contradicts Claim C'(i — 1).
This completes the proof of all the claims. d
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