2 research outputs found

    Highly active and stable CuAlOx/WO3photoanode for simultaneous pollutant degradation, hydrogen and electricity generation

    No full text
    An unassisted solar water-energy nexus system (SWENS) based on an ultra-thin CuAlOx overlayer coated WO3 nanoplate array (CuAlOx/WO3) photoanode, a rear silicon solar cell and a Pt-black/Pt cathode was proposed to efficiently degrade refractory organic pollutants and simultaneously produce hydrogen and electricity. The formed p-n junction between p-type CuAlOx and n-type WO3 effectively facilitated the charge separation in the CuAlOx/WO3 photoanode. Moreover, the CuAlOx overlayer enhanced the capture of photogenerated holes and isolated WO3 from the solution, thereby improving the charge transfer and inhibiting the photocorrosion of WO3. Therefore, the optimized CuAlOx/WO3 photoanode showed a significantly enhanced and stable photocurrent density of ∼2.82 mA cm-2 at 1.0 V vs. Ag/AgCl, which was ∼4 times higher than that of the pristine WO3. Based on this outstanding photoelectrocatalytic performance, the assembled SWENS showed a degradation efficiency of nearly 100% for tetracycline, a hydrogen generation rate of ∼26.8 μmol·h-1·cm-2 and a power density of ∼593 μW cm-2 under simulated solar light illumination. Our SWENS also exhibited outstanding universality in degrading various refractory organic pollutants for green energy production

    Climate-controlled submarine landslides on the Antarctic continental margin

    No full text
    Antarctica’s continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides.</p
    corecore