31 research outputs found

    Atomic structures and deletion mutant reveal different capsid-binding patterns and functional significance of tegument protein pp150 in murine and human cytomegaloviruses with implications for therapeutic development.

    Get PDF
    Cytomegalovirus (CMV) infection causes birth defects and life-threatening complications in immunosuppressed patients. Lack of vaccine and need for more effective drugs have driven widespread ongoing therapeutic development efforts against human CMV (HCMV), mostly using murine CMV (MCMV) as the model system for preclinical animal tests. The recent publication (Yu et al., 2017, DOI: 10.1126/science.aam6892) of an atomic model for HCMV capsid with associated tegument protein pp150 has infused impetus for rational design of novel vaccines and drugs, but the absence of high-resolution structural data on MCMV remains a significant knowledge gap in such development efforts. Here, by cryoEM with sub-particle reconstruction method, we have obtained the first atomic structure of MCMV capsid with associated pp150. Surprisingly, the capsid-binding patterns of pp150 differ between HCMV and MCMV despite their highly similar capsid structures. In MCMV, pp150 is absent on triplex Tc and exists as a "Λ"-shaped dimer on other triplexes, leading to only 260 groups of two pp150 subunits per capsid in contrast to 320 groups of three pp150 subunits each in a "Δ"-shaped fortifying configuration. Many more amino acids contribute to pp150-pp150 interactions in MCMV than in HCMV, making MCMV pp150 dimer inflexible thus incompatible to instigate triplex Tc-binding as observed in HCMV. While pp150 is essential in HCMV, our pp150-deletion mutant of MCMV remained viable though with attenuated infectivity and exhibiting defects in retaining viral genome. These results thus invalidate targeting pp150, but lend support to targeting capsid proteins, when using MCMV as a model for HCMV pathogenesis and therapeutic studies

    Purification of Herpesvirus Virions and Capsids

    No full text
    This protocol was designed for large-scale purification of herpesvirus particles by cell culture. Virions and capsids are isolated from extracellular culture media and cell nuclei, respectively. Purity and concentration of the purified samples are usually sufficient for structural studies with cryo electron microscopy and cryo electron tomography. The protocol should also be generally suitable for purifying herpesvirus virions and capsids for other types of studies

    Organization of capsid-associated tegument components in Kaposi's sarcoma-associated herpesvirus.

    No full text
    UnlabelledCapsid-associated tegument proteins have been identified in alpha- and betaherpesviruses to play an essential role in viral DNA packaging. Whether and how such tegument proteins exist in gammaherpesviruses have been mysteries. Here, we report a 6-Å-resolution cryo-electron microscopy (cryo-EM) structure of Kaposi's sarcoma-associated herpesvirus (KSHV) virion, a member of the oncogenic gammaherpesvirus subfamily. The KSHV virion structure reveals, for the first time, how capsid-associated tegument proteins are organized in a gammaherpesvirus, with five tegument densities capping each penton vertex, a pattern highly similar to that in alphaherpesvirus but completely different from that in betaherpesvirus. Each KSHV tegument density can be divided into three prominent regions: a penton-binding globular region, a helix-bundle stalk region, and a β-sheet-rich triplex-binding region. Fitting of the crystal structure of the truncated HSV-1 UL25 protein (the KSHV ORF19 homolog) and secondary structure analysis of the full-length ORF19 established that ORF19 constitutes the globular region with an N-terminal, 60-amino-acid-long helix extending into the stalk region. Matching secondary structural features resolved in the cryo-EM density with secondary structures predicted by sequence analysis identifies the triplex-binding region to be ORF32, a homolog of alphaherpesvirus UL17. Despite the high level of tegument structural similarities between KSHV and alphaherpesvirus, an ORF19 monomer in KSHV, in contrast to a UL25 dimer in alphaherpesviruses, binds each penton subunit, an observation that correlates with conformational differences in their pentons. This newly discovered organization of triplex-ORF32-ORF19 also resolves a long-standing mystery surrounding the virion location and conformation of alphaherpesvirus UL25 protein.ImportanceSeveral capsid-associated tegument proteins have been identified in the alpha- and betaherpesvirus subfamilies of the Herpesviridae. These tegument proteins play essential roles in viral propagation and are potential drug targets for curbing herpesvirus infections. However, no such tegument proteins have been identified for gammaherpesviruses, the third herpesvirus subfamily, which contains members causing several human cancers. Here, by high-resolution cryo-EM, we show the three-dimensional structure of the capsid-associated tegument proteins in the prototypical member of gammaherpesviruses, KSHV. The cryo-EM structure reveals that the organization of KSHV capsid-associated tegument proteins is highly similar to that in alphaherpesvirus but completely different from that in betaherpesvirus. Structural analyses further localize ORF19 and ORF32 proteins (the alphaherpesvirus UL25 and UL17 homologs in KSHV, respectively) in the KSHV capsid-associated tegument cryo-EM structure. These findings also resolve a long-standing mystery regarding the location and conformation of alphaherpesvirus UL25 protein inside the virion

    CryoEM and mutagenesis reveal that the smallest capsid protein cements and stabilizes Kaposi's sarcoma-associated herpesvirus capsid

    No full text
    With just one eighth the size of the major capsid protein (MCP), the smallest capsid protein (SCP) of human tumor herpesviruses--Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV)--is vital to capsid assembly, yet its mechanism of action is unknown. Here, by cryoEM of KSHV at 6-Ã… resolution, we show that SCP forms a crown on each hexon and uses a kinked helix to cross-link neighboring MCP subunits. SCP-null mutation decreased viral titer by 1,000 times and impaired but did not fully abolish capsid assembly, indicating an important but nonessential role of SCP. By truncating the C-terminal half of SCP and performing cryoEM reconstruction, we demonstrate that SCP's N-terminal half is responsible for the observed structure and function whereas the C-terminal half is flexible and dispensable. Serial truncations further highlight the critical importance of the N-terminal 10 aa, and cryoEM reconstruction of the one with six residues truncated localizes the N terminus of SCP in the cryoEM density map and enables us to construct a pseudoatomic model of SCP. Fitting of this SCP model and a homology model for the MCP upper domain into the cryoEM map reveals that SCP binds MCP largely via hydrophobic interactions and the kinked helix of SCP bridges over neighboring MCPs to form noncovalent cross-links. These data support a mechanistic model that tumor herpesvirus SCP reinforces the capsid for genome packaging, thus acting as a cementing protein similar to those found in many bacteriophages
    corecore