1,195 research outputs found

    Critical Fields and Anisotropy of NdO0.82F0.18FeAs Single Crystals

    Full text link
    The newly discovered iron-based superconductors have stimulated enormous interests in the field of superconductivity. Since the new superconductor is a layered system, the anisotropy is a parameter with the first priority to know. Meanwhile any relevant message about the critical fields (upper critical field and irreversibility line) are essentially important. By using flux method, we have successfully grown the single crystals NdO0.82F0.18FeAs at ambient pressure. Resistive measurements reveal a surprising discovery that the anisotropy \Gamma = (mc/mab)^{1/2} is below 5, which is much smaller than the theoretically calculated results. The data measured up to 400 K show a continuing curved feature which prevents a conjectured linear behavior for an unconventional metal. The upper critical fields determined based on the Werthamer-Helfand-Hohenberg formula are H_{c2}^{H||ab}(T=0 K) = 304 T and H_{c2}^{H||c}(T=0 K)=62-70 T, indicating a very encouraging application of the new superconductors.Comment: 12 pages, 4 figures, Submitted on 26 May, 200

    Subcellular localization of Bombyx mori ribosomal protein S3a and effect of its over-expression on BmNPV infection

    Get PDF
    In the present study, using a BV/PH-Bms3a-EGFP, we found that Bombyx mori ribosomal protein S3a (BmS3a) with EGFP fused to its C-terminal, was predominantly localized in the cytoplasm of B. mori cells. Subsequently, to investigate the effect of BmS3a over-expression on BmNPV infection both at the cellular level and in vivo, a transgenic BmN cell line expressing BmS3a was constructed using a piggybac-A3-EGFP and recombinant baculovirues expressing BmS3a-EGFP fusion protein (BV/IE1-Bms3a-EGFP) or EGFP (BV/EGFP) were produced using BmNPV/Bac-to-Bac expression system. Results showed that the number of polyhedral in the transgenic cells of BmS3a was much smaller than that in non-transgenic cells, and that silkworms injected with BV/IE1-Bms3a-EGFP survived much longer than those injected with BV/EGFP. Taken together, we speculated that BmS3a might be capable of inhibiting BmNPV replication through its activities in the cytoplasm

    Thermal and magnetic properties of spin-1 magnetic chain compounds with large single-ion and in-plane anisotropies

    Full text link
    The thermal and magnetic properties of spin-1 magnetic chain compounds with large single-ion and in-plane anisotropies are investigated via the integrable su(3) model in terms of the quantum transfer matrix method and the recently developed high temperature expansion method for exactly solved models. It is shown that large single-ion anisotropy may result in a singlet gapped phase in the spin-1 chain which is significantly different from the standard Haldane phase. A large in-plane anisotropy may destroy the gapped phase. On the other hand, in the vicinity of the critical point a weak in-plane anisotropy leads to a different phase transition than the Pokrovsky-Talapov transition. The magnetic susceptibility, specific heat and magnetization evaluated from the free energy are in excellent agreement with the experimental data for the compounds NiC_2H_8N_2)_2Ni(CN)_4 and Ni(C_{10}H_8N_2)_2Ni(CN)_4.H_2O.Comment: 18 pages, 6 figures, to appear in PR

    Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials

    Get PDF
    The critical theory of the onset of antiferromagnetism in metals, with concomitant Fermi surface reconstruction, has recently been shown to be strongly coupled in two spatial dimensions. The onset of unconventional superconductivity near this critical point is reviewed: it involves a subtle interplay between the breakdown of fermionic quasiparticle excitations on the Fermi surface, and the strong pairing glue provided by the antiferromagnetic fluctuations. The net result is a logarithm-squared enhancement of the pairing vertex for generic Fermi surfaces, with a universal dimensionless co-efficient independent of the strength of interactions, which is expected to lead to superconductivity at the scale of the Fermi energy. We also discuss the possibility that the antiferromagnetic critical point can be replaced by an intermediate `fractionalized Fermi liquid' phase, in which there is Fermi surface reconstruction but no long-range antiferromagnetic order. We discuss the relevance of this phase to the underdoped cuprates and the heavy-fermion materials.Comment: Talk at SCES 2011; 19 pages, 12 figures; (v2) corrected typo

    Angular dependence of resistivity in the superconducting state of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals

    Full text link
    We report the results of angle dependent resistivity of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals in the superconducting state. By doing the scaling of resistivity within the frame of the anisotropic Ginzburg-Landau theory, it is found that the angle dependent resistivity measured under different magnetic fields at a certain temperature can be collapsed onto one curve. As a scaling parameter, the anisotropy Γ\Gamma can be determined for different temperatures. It is found that Γ(T)\Gamma(T) increases slowly with decreasing temperature, varying from Γ\Gamma \simeq 5.48 at T=50 K to Γ\Gamma \simeq 6.24 at T=44 K. This temperature dependence can be understood within the picture of multi-band superconductivity.Comment: 7 pages, 4 figure

    Transport properties and superconductivity in Ba1xMxFe2As2Ba_{1-x}M_xFe_2As_2 (M=La and K) with double FeAs layers

    Full text link
    We synthesized the samples Ba1xMxFe2As2Ba_{1-x}M_xFe_2As_2 (M=La and K) with ThCr2Si2ThCr_2Si_2-type structure. These samples were systematically characterized by resistivity, thermoelectic power (TEP) and Hall coefficient (RHR_H). BaFe2As2BaFe_2As_2 shows an anomaly in resistivity at about 140 K. Substitution of La for Ba leads to a shift of the anomaly to low temperature, but no superconducting transition is observed. Potassium doping leads to suppression of the anomaly in resistivity and induces superconductivity at 38 K as reported by Rotter et al.\cite{rotter}. The Hall coefficient and TEP measurements indicate that the TEP is negative for BaFe2As2BaFe_2As_2 and La-doped BaFe2As2BaFe_2As_2, indicating n-type carrier; while potassium doping leads to change of the sign in RHR_H and TEP. It definitely indicates p-type carrier in superconducting Ba1xKxFe2As2Ba_{1-x}K_xFe_2As_2 with double FeAs layers, being in contrast to the case of LnO1xFxFeAsLnO_{1-x}F_xFeAs with single FeAs layer. A similar superconductivity is also observed in the sample with nominal composition Ba1xKxOFe2As2Ba_{1-x}K_xOFe_2As_2.Comment: 4 pages, 4 figure

    The mechanical relaxation study of polycrystalline MgCNi3

    Full text link
    The mechanical relaxation spectra of a superconducting and a non-superconducting MgCNi3 samples were measured from liquid nitrogen temperature to room temperature at frequency of kilohertz. There are two internal friction peaks (at 300 K labeled as P1 and 125 K as P2) for the superconducting sample. For the non-superconducting one, the position of P1 shifts to 250 K, while P2 is almost completely depressed. It is found that the peak position of P2 shifts towards higher temperature under higher measuring frequency. The calculated activation energy is 0.13eV. We propose an explanation relating P2 to the carbon atom jumping among the off-center positions. And further we expect that the behaviors of carbon atoms maybe correspond to the normal state crossovers around 150 K and 50 K observed by many other experiments.Comment: 4 figure

    Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal

    Full text link
    Understanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K, Rb, and Cs) provides us a new playground to study the interplay of superconductivity and CDW state by involving nontrivial topology of band structures. Here, we conduct high-pressure electrical transport and magnetic susceptibility measurements to study CsV3Sb5 with the highest Tc of 2.7 K in AV3Sb5 family. While the CDW transition is monotonically suppressed by pressure, superconductivity is enhanced with increasing pressure up to P1~0.7 GPa, then an unexpected suppression on superconductivity happens until pressure around 1.1 GPa, after that, Tc is enhanced with increasing pressure again. The CDW is completely suppressed at a critical pressure P2~2 GPa together with a maximum Tc of about 8 K. In contrast to a common dome-like behavior, the pressure-dependent Tc shows an unexpected double-peak behavior. The unusual suppression of Tc at P1 is concomitant with the rapidly damping of quantum oscillations, sudden enhancement of the residual resistivity and rapid decrease of magnetoresistance. Our discoveries indicate an unusual competition between superconductivity and CDW state in pressurized kagome lattice.Comment: 16 pages, 4 figure

    KxFe2-ySe2 single crystals: Floating-zone growth, Transport and Structural properties

    Full text link
    Single crystals of superconducting KxFe2-ySe2 have been grown with the optical floating-zone technique under application of 8 bar of argon pressure. We found that large and high quality single crystals with dimensions of ~\varnothing6 \times 10 mm could be obtained at the termination of the grown ingot through quenching, while the remaining part of the ingot decomposed. As-grown single crystals commonly represent an intergrowth of two sets of the c-axis characterized by slightly different lattice constants. Single crystal of K0.80Fe1.81Se2 shows a superconducting transition at Tc = 31.6 K, leading to a near 100% expulsion of the external magnetic field in magnetization measurements. On the other hand, neutron-diffraction data indicate that superconductivity in the sample coexists with a iron-vacancy superstructure and static antiferromagnetic order. The anisotropic ratio of the upper critical field Hc2 for both H//c and H//ab configurations is \sim3.46

    An insight into the Chinese traditional seafood market: Species characterization of cephalopod products by DNA barcoding and phylogenetic analysis using COI and 16SrRNA genes

    Get PDF
    Squids, cuttlefish and octopus are used for the preparation of traditional products sold on the Chinese market without a specific denomination. In this study DNA barcoding and phylogenetic distance analysis of COI and 16S rRNA genes' fragments were used to characterize the most commonly processed species in dried whole, grilled shredded and salted cephalopod preparations. Ninety-five products (23 sold as cuttlefish, 4 as octopus and 68 as squid) purchased in Chinese local markets were analyzed. Overall, the study identified 10 different species: Sepia pharaonis, S. esculenta, S. recurvirostra, S. lycidas in cuttlefish; Amphioctopus marginatus in octopus; Uroteuthis chinensis, U. edulis, Ommastrephes bartramii, Illex argentinus and Dosidicus gigas in squids. This latter species, characterized by a low commercial value, was found in the majority of the samples (50.5%) and in all the shredded products. By comparing the molecular results with the declared macrocategory (cuttlefish, octopus and squid), two cases of misdescription were pointed out, involving shredded cuttlefish and octopus which were identified as D. gigas. Our results are of particular interest in the light of the scarcity of data regarding the identification of cephalopods on international markets and considering that China is one of the leading cephalopod-producing countries
    corecore