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Antiferromagnetism in metals:

from the cuprate superconductors

to the heavy fermion materials
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2 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA
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Abstract. The critical theory of the onset of antiferromagnetism in metals, with

concomitant Fermi surface reconstruction, has recently been shown to be strongly

coupled in two spatial dimensions. The onset of unconventional superconductivity near

this critical point is reviewed: it involves a subtle interplay between the breakdown

of fermionic quasiparticle excitations on the Fermi surface, and the strong pairing

glue provided by the antiferromagnetic fluctuations. The net result is a logarithm-

squared enhancement of the pairing vertex for generic Fermi surfaces, with a universal

dimensionless co-efficient independent of the strength of interactions, which is expected

to lead to superconductivity at the scale of the Fermi energy. We also discuss the

possibility that the antiferromagnetic critical point can be replaced by an intermediate

‘fractionalized Fermi liquid’ phase, in which there is Fermi surface reconstruction but

no long-range antiferromagnetic order. We discuss the relevance of this phase to the

underdoped cuprates and the heavy-fermion materials.
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1. Introduction

The study of quantum antiferromagnetism in metals is clearly of fundamental

importance to a variety of modern correlated electron materials, from the heavy-

fermion superconductors to the modern copper-based and iron-based high temperature

superconductors [1].

As a prominent example, consider the electron-doped superconductor Nd2−xCexCuO4.

Neutron scattering experiments [2] demonstrated the onset of antiferromagnetic long-

range order in a metal at a doping x ≈ 0.14, not too far from the dopings with the

highest critical temperatures for superconductivity. Early photoemission experiments

[3] also presented evidence for the reconstruction of the Fermi surface near this doping.

More recently, the reconstruction of the Fermi surface has been extensively studied by

quantum oscillation experiments in strong magnetic fields [4, 5]. And finally, transport

experiments [6] have detected signatures of “strange metal” behavior near the onset of

antiferromagnetism.

Similar physics also applies to the iron-based superconductors, as demonstrated by

the example of BaFe2(As1−xPx)2 [7]: here we find a quantum phase transition involving

the onset of antiferromagnetism, accompanied by high temperature superconductivity

and strange metal behavior.

The theory of the onset of antiferromagnetism in metals has been studied for many

decades. It has recently been established [8, 9] that the critical theory is strongly coupled

in the physically important case of spatial dimension d = 2, with a breakdown of all the

formal expansion methods of critical field theories. So accurate computations which can

be quantitatively compared with experiments are presently out of reach. Nevertheless,

significant qualitative insights have been gained, and here we will review the answers to

two important questions:

(A) Does unconventional high temperature superconductivity appear near the

antiferromagnetic critical point in metals ?

(B) In the traditional Hartree-Fock theory of antiferromagnetism in metals, there

is a single quantum critical point separating the Fermi liquid with a “large”

Fermi surface (a FL), from a Fermi liquid with antiferromagnetic order and a

reconstructed Fermi surface of “small pockets” (an AFM-FL); note that the Fermi

surface volumes obey the traditional Luttinger relation in both phases. Can this

critical point, under suitable conditions, be replaced by an intermediate non-Fermi

liquid phase (or phases) ?

The answer to question (A) will be presented in Section 2. The proposal of d-

wave-like pairing near an antiferromagnetic quantum phase transition predates the

discovery of the cuprate superconductors [10, 11, 12]. At least in the weak-coupling

limit, this proposal has been put on a solid footing [13]. However, it has not been

clear whether turning up the strength of the interactions will lead to true higher

temperature superconductivity. The stronger antiferromagnetic fluctuations can also
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degrade the integrity of the underlying fermionic quasiparticles, and this can compensate

for any increase in the strength of the pairing glue [14]. Moreover, stronger interactions

could lead to additional instabilities to other types of order, which can pre-empt

superconductivity. In Section 2 we will review recent computations [8] showing that high

temperature superconductivity does indeed appear near the antiferromagnetic quantum

critical point in two spatial dimensions, with the pairing glue dominating effects due to

quasiparticle breakdown and to instabilities towards other orders.

Question (B) will be addressed in Section 3. We will review arguments that the

single critical point can indeed be replaced in appropriate conditions by an intermediate

phase—the ‘fractionalized Fermi liquid’ (FL*) [15, 16]. A complementary review, with

a more complete discussion of experiments and related theoretical work may be found

in a recent paper by M. Vojta [17]. In the present context, the FL* phase has its

Fermi surface reconstructed into small pockets, but without antiferromagnetic order

even at zero temperature [18, 19]; the absence of antiferromagnetic order implies that

the Fermi surface volumes do not obey the Luttinger relation in the FL* phase. The

traditional antiferromagnetic critical point is associated with two distinct changes in

the ground state: the onset of antiferromagnetic order and the reconstruction of the

Fermi surface. Section 3 argues that these changes can be separated into two steps.

Starting from the antiferromagnetic Fermi liquid with small pockets (AFM-FL), the

first quantum transition involves the disappearance of antiferromagnetic order into a

FL* phase [18, 19, 20, 21]; however, the small pocket Fermi surfaces are retained in

the FL* phase, even though they now violate the Luttinger relation. The large Fermi

surface appears only after one or more additional quantum transitions lead eventually to

a Fermi liquid with a large Fermi surface (FL). We will discuss applications of this exotic

possibility of an intermediate FL* phase to the hole-doped cuprates. We also describe

the appearance of the FL* phase in Kondo lattice models appropriate to the heavy

fermion compounds, where the FL* Fermi surfaces are associated with band structure

of the conduction electrons.

2. Superconductivity near the antiferromagnetic quantum critical point

In the familiar Hartree-Fock theory of antiferromagnetic (or spin density wave) ordering

in a metal, we begin with a Fermi liquid metal (FL) associated with quasiparticles with

a dispersion εk: an example appropriate to the cuprates is shown in Fig. 1. Then,

we introduce spin density wave order at the wavevector K = (π, π), represented by

the antiferromagnetic order parameter ϕα, with α = x, y, z the spin components. The

electrons will undergo Bragg reflection off this ordering, and so acquire a modified

dispersion which will also change the Fermi surface. This is illustrated in Fig. 2. The

antiferromagnetic order mixes electron states with momentum k and k + K, and so in

Fig. 2b we plot the Fermi surface along with the Fermi surface shifted by K. There is

Bragg reflection of the zero-energy states on the Fermi surface only at the points where

these Fermi surfaces intersect: these are the “hot spots”. Gaps open at these hot spots,
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Hole
states
occupied

Electron
states
occupied

Figure 1. Two views of the Fermi surface of the cuprate superconductors (hole and

electron doped) in the FL phase. The left panel has the momentum k = (0, 0) (the “Γ

point”, denoted by the filled circle) in the center of the square Brillouin zone, while

the right panel has the Γ point at the bottom-left edge. The momenta with both up

and down electron states occupied are shaded gray.

leading to a reconstruction of the Fermi surface into small pockets in the AFM-FL, as

shown in Fig. 2c.

We expect this transition involving onset of antiferromagnetism to occur as a

function of increasing local repulsion between the electrons e.g. by turning up the

strength of the on-site repulsion, U , in a Hubbard-like model. This leads to the simple

ground state phase diagram shown in Fig. 3, with a quantum critical point at a critical

interaction strength separating the phases with and without antiferromagnetic order.

The two phases have “small” and “large” Fermi surfaces respectively. The Luttinger

relation counts the number of electrons modulo 2 per unit cell, and the doubling of the

unit cell in the AFM-FL phase ensures that the Fermi surfaces in both phases enclose

the traditional Luttinger volume.

We are interested here in the physics in the vicinity of this critical point. This is

described by a universal low-energy theory [24] whose structure we now describe. The

important low energy fermionic excitations lie in the vicinity of the hot spots; let us

focus here on just one of the hot spots. There are two Fermi lines intersecting at the

hot spots, and we label the fermionic quasiparticles along these lines by ψ1a and ψ2a

(a =↑, ↓ is an electron spin label), as shown in Fig. 4. The momenta of both fermions

will be measured with respect to the hot spot momentum kh. Then, these fermions are

described by the Lagrangian

Sψ =

∫
dτd2x

[
ψ†1a

(
∂

∂τ
− iv1 ·∇

)
ψ1a + ψ†2a

(
∂

∂τ
− iv2 ·∇

)
ψ2a

]
, (1)

where τ is imaginary time, v1 = ∇kεk|kh
is the Fermi velocity at kh, and similarly

for v2. The critical theory is completed by coupling these fermions to the quantum

fluctuations of the antiferromagnetic order parameter ϕα, described by

Sψϕ =

∫
dτd2x

[
1

2
(∇ϕα)2+

r

2
ϕ2
α+

u

4

(
ϕ2
α

)2
+λϕασ

α
ab

(
ψ†1aψ2b + ψ†2aψ1b

)]
, (2)

where σα are the Pauli matrices. The first three terms in Eq. (2) give the standard
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Figure 2. The transformation of the Fermi surface of the cuprates by

antiferromagnetism [22, 23]. The areas enclosed by the Fermi surfaces obey the

Luttinger relation in all cases here. (a) Fermi surface without antiferromagnetic order

(FL), as in Fig. 1 (b) The original Fermi surface along with the Fermi surface shifted

by wavevector K = (π, π). These intersect at the hot spots shown by the filled circles.

(c) With the onset of a non-zero spin antiferromagnetic order with 〈ϕα〉 6= 0 in the

AFM-FL phase, gaps open at the hot spots leading to electron (thin lines) and hole

(thick lines) pockets. (d) With increasing ||〈ϕα〉|| the electron pockets shrink to zero

for the hole-doped case, leaving only hole pockets in a AFM-FL phase. In the electron-

doped case, the hole pockets shrink to zero, leaving only electron pockets (this is not

shown) in an AFM-FL phase. Finally, in the half-filled case, the electron and hole

pockets shrink to zero simultaneously.

Landau-Ginzburg action representing the contribution of the high-energy electrons to

the energy of the antiferromagnetic state. But the crucial term is the “Yukawa” coupling,

λ by which φα scatters a ψ1 fermion into a ψ2 fermion, and vice versa: in the original

lattice co-ordinates, this is a process in which the electron picks up a momentum close to

K from the antiferromagnetic order parameter. This Yukawa coupling can be obtained

by a Hubbard-Stratanovich decoupling of the on-site interaction, in which case λ2 ∼ U .

In the AFM-FL phase where the expectation value 〈ϕα〉 6= 0, the Yukawa coupling opens

a gap of 2λ||〈ϕα〉|| at the hot spot, and this reconstructs the Fermi surfaces, as shown

in Fig 5.

As we are interested in the limit of large U , a bare perturbative analysis in powers

of λ is not expected to be an acceptable strategy to analyze the critical theory. A
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�ϕα� �= 0 �ϕα� = 0

Metal with “large” 
Fermi surface

Metal with electron 
and hole pockets

Increasing SDW order

Repulsive interaction, U

AFM-FL FL

Figure 3. Zero temperature phases as a function of repulsive short-range interactions

between the electrons. ϕα is the antiferromagnetic order parameter, and the Fermi

surfaces in the two phases are shown. The Fermi volumes obey the Luttinger relation in

both phases. In the AFM-FL phase, the doubling of the unit cell by antiferromagnetic

order ensures that the pocket Fermi surfaces are compatible with the Luttinger relation.

v1 v2

k⊥

k�

ψ2 fermions
occupied

ψ1 fermions
occupied

θ

Figure 4. Fermi surfaces of ψ1 and ψ2 fermions and their respective Fermi velocities

v1 and v2 in the FL phase with 〈ϕα〉 = 0. The Fermi lines intersect at the hot spot,

denoted by the filled circle at the origin. The vicinity of this hot spot is similar to any

one of the hot spots in Fig. 2b.
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v1 v2

Figure 5. Deformation of the Fermi surfaces in Fig. 4 in the AFM-FL phase with

〈ϕα〉 6= 0. A gap has opened up at the hot spot, and this leads to the Fermi surface

reconstruction shown above, or equivalently, in Fig.2c.

comprehensive study of the structure of the critical fluctuations of Sψ + Sψφ has been

provided recently in Ref. [8]. As noted earlier, there is a flow to strong coupling, and

so a complete understanding has not been achieved. Nevertheless, useful information

can be obtained from a renormalized two-loop analysis, and we summarize some of the

basic results.

In the immediate vicinity of the hot spots, there is a complete breakdown of

the fermionic quasiparticle excitations at the quantum critical point. The ψ1 Green’s

function has the general structure [24, 25]

Ghot−spot ∼
1√

iω − v1 · k
(3)

where ω is a real frequency. So there is no quasiparticle pole, just a critical continuum

of fermionic excitations close to the hot spot. However, low energy quasiparticles are

less strongly perturbed along the Fermi lines away from the hot spots. As denoted in

Fig. 4, if we approach the Fermi line with k⊥ → 0 at a fixed k‖, then the one-loop Fermi

line Green’s function does have a quasiparticle pole of the form [8]

GFermi−line =
Z(k‖)

ω − vF (k‖)k⊥
(4)

where Z(k‖) is the quasi-particle residue, and vF (k‖) is the renormalized Fermi velocity.

The latter quantities were computed at the quantum critical point, and it was found

that they both vanish linearly with k‖:

Z(k‖) ∼ λ−2k‖ , vF (k‖) ∼ λ−2k‖. (5)

For future convenience we have also indicated the dependence of Z, vF on the coupling

constant λ. Thus, reassuringly, the quasiparticle residue does vanish as we approach

the hot spot, which is consistent with (3). Indeed, we can deduce the structure of (5)

from (3), with the knowledge that ω scales as k2 in the one-loop critical theory.
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∆

−∆

Figure 6. Pairing amplitude of the electrons near the hot spots. Hot spots

separated by K have opposite signs for the pairing amplitude, leading to unconventional

superconductivity.

Figure 7. Pairing vertex of two electrons with opposite spin. The wave line

represents the ‘pairing glue’: the fluctuations of a boson which induces the onset

of superconductivity. For the vicinity of the antiferromagnetic quantum critical point,

the boson is the antiferromagnetic order parameter ϕa.

2.1. Pairing instability

We are now finally in a position to ask about the instability of the metal to pairing in

the vicinity of the antiferromagnetic quantum critical point. That such an instability is

present, was pointed out already in an early study [10]. The instability was found to be

towards unconventional superconductivity, in which the electrons whose momenta differ

by K have opposite signs for the pairing amplitude. This is illustrated in Fig. 6 for the

Fermi surface appropriate to the cuprates.

Let us estimate the strength of this pairing instability by computing the strength

of the pairing vertex, Λ, as shown in Fig. 7. For the standard BCS theory of phonon-

mediated superconductivity, this pairing vertex at one-loop order has the form

Λ = 1 + λel−ph ln
(ωD
ω

)
(6)

where λel−ph is the electron-phonon coupling, ωD is the Debye frequency, and ω � EF is
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the energy of the Cooper pair. This result displays the famous ‘BCS logarithm’, which

implies that Fermi liquids are ultimately unstable to pairing, and the appearance of

superconductivity. The instability occurs at a frequency/temperature scale at which

the vertex correction becomes comparable to unity, and so the critical temperature

Tc ∼ ωD exp(−1/λel−ph).

Let us now estimate the critical temperature for pairing due to antiferromagnetic

fluctuations. Such a computation can be performed in a fully controlled manner only

in the small U limit, where it was found that [13]

Λ = 1 +

(
U

EF

)2

ln

(
EF
ω

)
, (7)

where EF is an energy of order the Fermi energy. This result does imply

superconductivity, but only at an exponentially small energy scale in the limit of U → 0,

with Tc ∼ EF exp (−(EF/U)2).

Finally, let us compute the vertex in Fig. 7 for the theory of the antiferromagnetic

critical point described above. It turns out that the strongest contribution to the

pairing vertex does not arise from the non-quasiparticle excitations close to the hot

spot (which were considered earlier [26]): the hot spot is where the pairing glue is

the strongest, but the breakdown of the quasiparticle reduces its efficacy. Instead, the

dominant contribution arises from the Fermi lines in its vicinity, where the quasiparticles

do survive, albeit with a small quasiparticle residue, see Eq. (4). We can estimate

the contribution of these quasiparticles to Fig. 7, by first computing the Cooper pair

propagator ∫
dΩ dk⊥ GFermi−line(k, ω + Ω) GFermi−line(k,Ω) ∼ Z2(k‖)

vF (k‖)
ln

(
k2‖
ω

)
(8)

This logarithm is the usual BCS logarithm. Note that it is suppressed by a factor of Z2,

indicating that the logarithm is linked to the integrity of the quasiparticles. From (5),

we see that the prefactor of the BCS logarithm ∼ λ−2k‖, which is small near the hot

spots. However, the vertex in Fig. 7 also involves a propagator for antiferromagnetic

ϕα fluctuations, and these contribute a pairing glue factor of λ2/k2‖ at the critical point

(arising from the gradient term in (2)). Consequently, we see that the enhancement of

the pairing glue at the critical point more than compensates for the vanishing of the

quasiparticle residue, and the remaining integral over k‖ is logarithmically divergent.

The final key result is that the correction to the pairing vertex has a log2 divergence:

one logarithm is the BCS logarithm, while the other is a “quantum critical logarithm’

associated with the divergence of spin fluctuations at the critical point. A careful

computation of the log2 divergence has been carried out [8], and the final result of

evaluating Fig. 7 is

Λ = 1 +
sin(θ)

2π
ln2

(
EF
ω

)
(9)

There are a number of remarkable features of this key result. First, the log2 divergence

is present for a generic antiferromagnetic quantum critical point: no special van Hove
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singularities are required on the Fermi surface, unlike the situation in some early studies

[28, 29]. Even more remarkable is the fact that the pre-factor of the log2 term in (9)

is independent of the Yukawa coupling λ in (2): the factors of λ associated with the

pairing glue cancel against the factors of λ associated with the renormalization of the

quasiparticle propagators. Indeed, the prefactor depends only on a geometric feature of

the Fermi surface: the angle θ denoted in Fig. 4. So we have found an instability towards

unconventional superconductivity with a universal strength. The result in (9) implies

that Tc ∼ EF , which is the promised ‘mechanism’ of high temperature superconductivity.

Values of Tc of this order have been discussed earlier [12], but without a universal

dimensionless constant characterizing the strength of the pairing glue.

Having found this strong instability to pairing, it is now natural to ask if the metal

near the onset of antiferromagnetism has any other instabilities. This question was

investigated in Ref. [8]. We only look for instabilities which are log2 or stronger in the

infrared. This reduces the possibilities greatly, and it was found that there was only one-

additional order parameter with a log2 enhancement: this was a modulated bond order

which is locally an Ising-nematic order; this is reviewed more completely elsewhere [27].

However, crucially, the co-efficient of the log2 in the nematic order vertex was smaller

than that in (9) by a factor of 3. This suggests the dominance of the instability towards

d-wave pairing at an energy scale of order EF , of universal strength dependent only

upon geometric features of the Fermi surface.

3. The fractionalized Fermi liquid phase

We now turn to question (B) from Section 1. Under suitable conditions, can the

antiferromagnetic quantum critical point of Fig. 3 be replaced by an exotic intermediate

phase ? Here, we describe a route involving the “fractionalized Fermi liquid” (FL*)

[15, 16, 17], as shown in Fig. 8.

In the context of the single-band electronic models considered in Section 2 for the

cuprates, this FL* phase is best understood near the transition to the AFM-FL. Begin

with the AFM-FL, which has 〈ϕα〉 6= 0 and “small” pocket Fermi surfaces obeying the

Luttinger relation. Now consider quantum fluctuations which predominantly involve

rotations in the orientation of the local antiferromagnetic order, while maintaining its

magnitude. It seems clear that at least locally, the gap of Fig. 5 in the electronic

spectrum near the hot spots will be maintained. However, the traditional picture [30]

is that the fermions will eventually realize the absence of true long-range order, and so

the hot-spot gap of Fig. 5 will fill in at low energies i.e. the gap is only a soft-gap, and

there will ultimately be low energy fermionic excitations near the hot spot, and so the

Fermi surface will not reconstruct, and the Fermi surface will enclose a “large” volume.

In this case, we revert to the phase diagram discussed in Section 2, of a direct transition

from the AFM-FL to the “large” Fermi surface Fermi liquid without antiferromagnetic

long-range order (FL).

However, it has been argued in a series of papers [31, 32, 33, 34, 18, 19] that there
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�ϕα� = 0

Metal with 
“large” 
Fermi 
surface

Metal with 
electron 
and hole 
pockets

Increasing SDW order

“Small” Fermi surfaces 
with full translational 

and spin-rotation 
symmetry preserved

Electron and/or hole 
Fermi pockets form in 
“local” AFM order, but 
quantum fluctuations 
destroy long-range

AFM order

Repulsive interaction, U

�ϕα� �= 0 �ϕα� = 0

AFM-FL FLFL*

Figure 8. Modification of the phase diagram of Fig. 3, by the inclusion of an

intermediate FL* phase. The FL* phase has no antiferromagnetic order (〈ϕα〉 = 0);

however, at least close to the transition to the metal with antiferromagnetic order, it

inherits “small” pocket Fermi surfaces from the phase with 〈ϕα〉 6= 0. The FL* phase

also has additional charge 0 excitations which are similar to those of an insulating

spin liquid. The pocket Fermi surfaces obey the conventional Luttinger theorem in the

AFM-FL phase, but not in the FL* phase.

is an alternate possibility: the electronic gap at the hot spots shown in Fig. 5 remains

a hard -gap at zero temperature, even though true long-range antiferromagnetic order is

not present. We can roughly understand this gap by transforming to a rotating reference

frame oriented along the direction of the local antiferromagnetic order [34]: the resulting

fermions will have a hard gap to leading order in the gradients of the antiferromagnetic

order. The pocket Fermi surfaces survive in a phase without breaking of translational

or spin rotation symmetry: this is a realization of the FL* phase, in which the small

pocket Fermi surfaces do not obey the Luttinger relation.

The arguments for such a transition build upon a description of the spin fluctuations

using ‘fractionalized’ degrees of freedom [35, 36, 37, 21, 17]. The key idea is that, under

suitable conditions, the appropriate bosonic variable for the local antiferromagnetic

order is not the vector ϕα, but a complex bosonic spinor za: these are related by

ϕα = z∗aσ
α
abzb. (10)

The za spinor can be conveniently used to define a rotating reference frame for the

fermions, oriented along the direction of the local antiferromagnetic order [34]. Note
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that (10) is invariant under the U(1) gauge transformation za → eiϑza, where the phase

ϑ can have an arbitrary dependence upon spacetime. So za is a fractionalized ‘spinon’,

which carries unit charge of an emergent U(1) gauge field; it is, however, neutral under

the electromagnetic gauge field. A description of the loss of antiferromagnetic order in

an AFM-FL phase by a theory of deconfined za spinons leads to an exotic metallic

phase without antiferromagnetic order. The za spinons are elementary excitations

of this metal, which carry spin S = 1/2 but are electromagnetically neutral. The

electromagnetic charge is carried initially by spinless fermions which also carry a charge

under the emergent U(1). These fermions have a strong attractive interaction with the

spinons, and so the two bind [32, 33, 34, 18, 19] to form electron-like states carrying spin

S = 1/2 and unit electromagnetic charge, but which are neutral under the emergent

U(1). These bound states fill a Fermi sea, with a small Fermi surface of electron-like

quasiparticles; so we identify this exotic metal as a FL* phase.

This theory of the AFM-FL to FL* transition has strong orientational fluctuations

of the antiferromagnetism, but inhibits magnitude fluctuations by suppressing

topological defects such as hedgehogs, for the case of collinear antiferromagnetism, or

Z2 vortices, for the case of non-collinear magnetism. (Strictly speaking, the hedgehogs

are always relevant at long enough scales in a U(1)-FL* phase [33, 18, 20], but we will

ignore this here, assuming the crossover to confinement happens at temperatures lower

than those of interest to us.) The suppression of defects turns out to be sufficient to

allow the hot spot gap of Fig. 5 to survive.

Recently, a more direct description of the AFM-FL to FL* transition has been

achieved [38]. This approach avoids the intermediate regime with the spinless fermion

states noted above, and deals directly with the electron-like bound states using the

‘spinon-dopon’ formulation of Ribeiro and Wen [39].

The FL* phase is a metal which breaks no symmetries, but differs from the

conventional Fermi liquid (FL) in two crucial ways:

• The FL* phase has gapless S = 1/2, charge e quasiparticle excitations, just like

a FL, but the number of these excitations is different. In a FL, the gapless

quasiparticles lie on a Fermi surface which encloses a “large” volume equal to the

total density of electrons: this is the familiar Luttinger theorem. In contrast, in a

FL* phase, the Fermi surface of electron-like excitations has a volume which differs

from the total density by one electron per unit cell: this leads to the “small” pocket

Fermi surfaces, which now violate the conventional Luttinger relation.

• The second important difference is that in a FL the Fermi surface quasiparticles

are the only low energy excitations, while the FL* phase also has neutral S = 1/2

spinon and associated gauge excitations.

Indeed, these two distinctions between the FL and FL* phase are intimately linked.

The link is provided by Oshikawa’s non-perturbative proof of the Luttinger theorem for

the Fermi liquid [40]. Oshikawa used a topological argument analogous to Laughlin’s

argument for the quantization of the Hall conductance. A key ingredient in his proof
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was the assumption that the only low energy excitations of the quantum state are the

quasiparticles at the Fermi surface, which is true in the FL phase. However, it was

subsequently noted [16] that this assumption provided an escape hatch. Insulating spin

liquids invariably have low energy global topological excitations of the type accounted

for by Oshikawa’s argument. The FL* phase inherits these global topological excitations

from the spin liquid: in our analysis above, these excitations are associated with

the emergent gauge field present in the theory of the deconfined za spinons. Using

Oshikawa’s method, it was then shown [16] that the global topological excitations of

the FL* allowed violation of the conventional Luttinger count on the volume enclosed

by the Fermi surface. Instead, this modification of the Oshikawa argument leads to

a FL* phase with “small” pocket Fermi surfaces, enclosing the same total volume as

those in the AFM-FL. We reiterate that the AFM-FL phase does not posses these

topological excitations, but its small Fermi surfaces do obey the conventional Luttinger

count because of the doubling of the unit cell by the antiferromagnetic order.

One significant consequence of these arguments is that now the Fermi surface

volume in the FL* phase can be viewed as a direct experimental signature of the

topological order of the spin liquid. In insulators, the topological order has so far evaded

experimental detection; remarkably, in metals its detection requires only measurement

of the Fermi surface volume by photoemission, and so is straightforward.

What about the shape of the pocket Fermi surfaces in the FL* phase ? In the

AFM-FL, these pockets were created by Bragg reflection of the Fermi surface across

the magnetic Brillouin zone boundary; consequently, the pockets are always centered on

the magnetic Brillouin zone boundary. For the FL* phase, this question was addressed

using a phenomenological effective field theory in Ref. [18], and the results are shown

in Fig. 9. Now there is full symmetry of the square lattice, and the magnetic Brillouin

zone boundary plays no special role. Consequently, the hole pocket Fermi surfaces are

centered at a generic point in momentum space, which generally does not lie on the

magnetic Brilluoin zone.

The FL* phase described here is a candidate for the ‘pseudogap regime’ of the

hole-doped cuprates. The gapping of the za spinons, and of a large portion of the

Fermi surface, can account for the reduction of the spin susceptibility. The hole

pocket spectrum in Fig. 9 has similarities to photoemission observations, in particular

to Ref. [41]. At low temperatures, the FL* phase may be unstable to confinement

transitions similar to those found in insulating spin liquids [42, 20], and this would

lead to translational symmetry breaking due to valence-bond ordering, and this may be

connected to scanning tunnelling microscopy observations [43]. NMR measurements [45]

on YBa2Cu3Oy have not observed antiferromagnetic order at fields upto 30 Tesla, but

do see indications of charge ordering. The angle dependence of quantum oscillations in

YBa2Cu3O6.59 has been argued [44] to imply the absence of spin-density wave ordering.

In the above experimental application, the main role of the FL* physics is to

provide a simple route to obtaining pocket Fermi surfaces without antiferromagnetic

order. Should charge/valence-bond order appear at the lowest scales, and the unit cell



Antiferromagnetism in metals 14

Figure 9. Fermi surfaces in the FL* phase, computed in the phenomenological model

of Ref. [18]. The color scale represents the quasiparticle residue on the Fermi surface.

Note that the hole pocket Fermi surfaces are not centered on the magnetic Brillouin

zone boundary, or otherwise sensitive to it. The volume enclosed by the pocket Fermi

surfaces is the same as that in the AFM-FL phase, but the conventional Luttinger

relation is violated only in the FL* phase.

increases in size, the Fermi volumes of the FL* become compatible with the Luttinger

volume. Nevertheless, the FL* phase can remain distinct from a Fermi liquid due to

the presence of spinon and gauge excitations. A true Fermi liquid is obtained only if a

confinement transition eliminates these extraneous excitations.

3.1. The Kondo lattice and the heavy fermion materials

We now give a different perspective on the FL* phase, appropriate for application to

the heavy fermion materials. Rather than working with analogs of the single-band

Hubbard model used so far for the cuprates, we formulate the theory in terms of phases

of the Kondo lattice model. We will find phases with the same qualitative low energy

characteristics, and so will identify them with the same labels. However, the short-

distance physical interpretation will be different, and this will give additional insight

into the physics of these phases. In particular, we will find that the FL* phase appears

more naturally, and has a simple physical interpretation.

The Kondo lattice model is described in terms of two bands of electrons: the

localized f electrons, and the itinerant conduction electrons, c. The f electrons interact

with each other via direct exchange interactions labeled JH , and with the c electrons via

the Kondo exchange JK . As a function of the ratio JK/JH , there are two basic Fermi

liquid phases, which are shown in Fig. 10. This phase diagram is the analog of Fig. 3

for the single band model.

For large JK/JH , we can initially treat the f moments as independent. Each f
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AFM-FL FL

Kondo exchange JK
Figure 10. Fermi liquid phases of the Kondo lattice model of f local moments and c

conduction electrons. These are qualitatively identical to the phases of the single-band

Hubbard model in Fig. 3. The Fermi surfaces of both phases obey the conventional

Luttinger theorem.

moment is Kondo-screened by the conduction electrons, and this is described in Wilson’s

renormalization group treatment as a flow of JK →∞. For the lattice model, this Kondo

screening leads to the well-studied heavy Fermi liquid state in which there is a “large”

Fermi surface enclosing a volume counting the density of both the f and c electrons.

Apart from its two-band nature, and the large quasiparticle mass, this phase is not

fundamentally distinct from the FL state of the single-band model in Fig. 3, and so we

have identified it accordingly in Fig. 10. For both models, the FL state is adiabatically

connected to the trivial Fermi liquid state of non-interacting electrons.

In contrast, for large JH/JK , the exchange between the f electrons can lead to

antiferromagnetic order. If this order is strong enough, we can treat the f moments as

static, and then the c electrons are free to form their own Fermi liquid. This Fermi

surface of c electrons is small, but the Luttinger relation is obeyed because of the

doubling of the unit cell by the antiferromagnetic order. Again, the resulting AFM-

FL state is qualitatively identical to that of the single band model in Fig. 3, and so has

been identified by the same symbol in Fig. 10. There may be additional distinctions

within the AFM-FL state involving changes in the shape of the Fermi surface while

preserving its volume: we are ignoring these here.

However, just as in Fig. 8 for the single-band model, there is also the possibility here

of an intermediate FL* phase [15, 16, 46], as shown in Fig. 11. Consider the situation
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Figure 11. Extension of Fig. 10 for the case where the f -f exchange is frustrated

and can induce a spin liquid of the f moments. Notice the similarity to the one-band

phase diagram in Fig. 8. The FL* is now understood simply by adiabatic continuity to

a state in which a spin-liquid of f moments is decoupled from a small Fermi surface of

c electrons; this small Fermi surface does not obey the conventional Luttinger relation.

where JH/JK is large, so we can initially ignore the Kondo exchange. Also, choose the

JH so that the f -f exchange is frustrated, leading to a spin liquid ground state for the

f electrons: this could happen e.g. if the f moments reside on a triangular lattice.

Now let us examine the influence of JK . Unlike the independent moment limit usually

studied in the Kondo model, now we don’t have a flow at low energies to JK →∞: the

f spin liquid lifts the two-fold degeneracy of each independent spin, and this quenches

the renormalization group flow of JK . Consequently, the resulting state of the Kondo

lattice model is now similar to the JK → 0 state, rather than to the JK → ∞ state.

This is the FL* state of Fig. 11, with a small Fermi surface of c electrons; because all

symmetries are preserved and there is no doubling of the unit cell, the conventional

Luttinger relation is violated. The Fermi surface of this FL* phase is associated with

the band structure of the c electrons alone, in contrast to its dependence upon local

antiferromagnetism in the single band model discussed earlier.

The combination of Figs. 3 and Fig. 8 is a useful framework for understanding

the physics of a wide variety of heavy fermion compounds [15, 16, 46, 47]. Initial

evidence for an intermediate FL* state between the well-studied AFM-FL and FL phase

appeared in the field-tuned studies of YbAgGe by Bud’ko et al. [48]. More recently, the
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Figure 12. Phase diagram of Custers et al. [50] (with permission; see also Ref. [51]).

The labels of the phases have been changed to correspond to those in Figs. 10,11, and

an extra point has been added for CeCu2Si2. Here K represents a Kondo exchange,

and Q is a measure of the frustration in the f -f exchange. At small values of Q, the

phase diagram as a function of increasing K is as in Fig. 10; and at large values of Q,

the phase diagram as a function of increasing K is as in Fig. 11.

extensive studies of YbRh2Si2 [49, 50] are so far consistent with a FL* interpretation.

We reproduce in Fig. 12 a phase diagram of Custers et al. [50, 51], which combines our

Figs. 10 and 11 with additional experimental information.

3.2. Discussion

We have given two complementary descriptions of the FL* phase above.

First, we approached the FL* phase from the AFM-FL phase. In this case, the

antiferromagnetic order, and its subsequent ‘quantum disordering’ was described most

conveniently by a theory of bosonic spinons. Consequently, the resulting FL* state had

bosonic spinon excitations, reflecting the nature of the underlying spin liquid.

Our second treatment of the FL* state used a Kondo lattice model. This approach

most conveniently describes the FL* to FL transition [16], using an underlying spin

liquid with fermionic spinons. We note that a fermionic spinon approach has been used

recently [39, 52, 53, 54] to describe the under-doped cuprates as a “Luttinger-volume

violating Fermi liquid” (LvvFL): the LvvFL state is qualitatively the same as the FL*

state.
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Therefore, we don’t have a single theory which can fully describe all the phases of

Figs. 8 and 11, and follow the evolution of the Fermi surface across the two (or more)

quantum phase transitions. At the very least, we need a description of the transmutation

of the neutral spinon excitations of the FL* phase from fermions to bosons. Finding

such a theory remains an important problem for future theoretical research.

Finally, we note that the FL* phase appears naturally as the correlated metallic

state in a large number of recent studies of compressible states by holographic methods

[55].
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