110 research outputs found

    Prediction of the treatment response in ovarian cancer: a ctDNA approach.

    Get PDF
    Ovarian cancer is the eighth most commonly occurring cancer in women. Clinically, the limitation of conventional screening and monitoring approaches inhibits high throughput analysis of the tumor molecular markers toward prediction of treatment response. Recently, analysis of liquid biopsies including circulating tumor DNA (ctDNA) open new way toward cancer diagnosis and treatment in a personalized manner in various types of solid tumors. In the case of ovarian carcinoma, growing pre-clinical and clinical studies underscored promising application of ctDNA in diagnosis, prognosis, and prediction of treatment response. In this review, we accumulate and highlight recent molecular findings of ctDNA analysis and its associations with treatment response and patient outcome. Additionally, we discussed the potential application of ctDNA in the personalized treatment of ovarian carcinoma. ctDNA-monitoring usage during the ovarian cancer treatments procedures

    Potential theranostics of circulating tumor cells and tumor-derived exosomes application in colorectal cancer

    Get PDF
    Background: At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Theranostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that relies on the development of biomarkers particularly "liquid biopsy". Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, recent attempts has shifted towards minimally noninvasive methods. Main text: CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detectable in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the development of isolation and characterization; a standardizable approach. This review highlights and discusses the current challenges to find the bio fluids application in CRC early detection and clinical management. Conclusion: Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the limited data available from clinical trials, further validations are required before addressing their putative application in oncology.Figure not available: see fulltext.. © 2020 The Author(s)

    Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: a systematic review and meta-analysis

    Get PDF
    Background: Gastric cancer (GC) is considered one of the most lethal malignancies worldwide, which is accompanied by a poor prognosis. Although reports regarding the importance of cancer stem cell (CSC) markers in gastric cancer progression have rapidly developed over the last few decades, their clinicopathological and prognostic values in gastric cancer still remain inconclusive. Therefore, the current meta-analysis aimed to quantitatively re-evaluate the association of CSC markers expression, overall and individually, with GC patients� clinical and survival outcomes. Methods: Literature databases including PubMed, Scopus, ISI Web of Science, and Embase were searched to identify the eligible articles. Hazard ratios (HRs) or odds ratios (ORs) with 95 confidence intervals (CIs) were recorded or calculated to determine the relationships between CSC markers expression positivity and overall survival (OS), disease-free survival (DFS)/relapse-free survival (RFS), disease-specific survival (DSS)/ cancer-specific survival (CSS), and clinicopathological features. Results: We initially retrieved 4,425 articles, of which a total of 66 articles with 89 studies were considered as eligible for this meta-analysis, comprising of 11,274 GC patients. Overall data analyses indicated that the overexpression of CSC markers is associated with TNM stage (OR = 2.19, 95 CI 1.84�2.61, P = 0.013), lymph node metastasis (OR = 1.76, 95 CI 1.54�2.02, P < 0.001), worse OS (HR = 1.65, 95 CI 1.54�1.77, P < 0.001), poor CSS/DSS (HR = 1.69, 95 CI 1.33�2.15, P < 0.001), and unfavorable DFS/RFS (HR = 2.35, 95 CI 1.90�2.89, P < 0.001) in GC patients. However, CSC markers expression was found to be slightly linked to tumor differentiation (OR = 1.25, 95 CI 1.01�1.55, P = 0.035). Sub-analysis demonstrated a significant positive relationship between most of the individual markers, specially Gli-1, Oct-4, CD44, CD44V6, and CD133, and clinical outcomes as well as the reduced survival, whereas overexpression of Lgr-5, Nanog, and sonic hedgehog (Shh) was not found to be related to the majority of clinical outcomes in GC patients. Conclusion: The expression of CSC markers is mostly associated with worse outcomes in patients with GC, both overall and individual. The detection of a combined panel of CSC markers might be appropriate as a prognostic stratification marker to predict tumor aggressiveness and poor prognosis in patients with GC, which probably results in identifying novel potential targets for therapeutic approaches. © 2021, The Author(s)

    Expressions of TWIST1 and CD105 markers in colorectal cancer patients and their association with metastatic potential and prognosis

    Get PDF
    Background: TWIST1 and CD105, which contribute to tumor malignancy, are overexpressed in cancers. Accordingly, TWIST1 enhances epithelial-to-mesenchymal transition (EMT) and promotes the formation of cancer stem cells (CSCs). Also, CD105 is a neoangiogenesis marker in endothelial cells, which is introduced as a CSC marker in tumoral epithelial cells in several types of cancers. The present study was aimed to investigate expressions of TWIST1 and CD105 in colorectal cancer (CRC) patients. Methods: Expressions of TWIST1 and CD105 in 250 CRC tissue samples were evaluated using immunohistochemistry on tissue microarrays (TMAs). In this regard, TWIST1 expression was investigated in the subcellular locations (cytoplasm and nucleus), while CD105 was mapped in endothelial cells and cytoplasmic tumor cells of CRC tissues. The association between the expression of these markers and clinicopathological parameters, as well as survival outcomes were analyzed. Results: Results indicate a statistically significant association between higher nuclear expression levels of TWIST1 and distant metastases in CRC (P = 0.040) patients. In addition, it was shown that the increased nuclear expression of TWIST1 had a poor prognostic value for disease-specific survival (DSS) and progression-free survival (PFS) (P = 0.042, P = 0.043, respectively) in patients with CRC. Moreover, analysis of CD105 expression level has revealed that there is a statistically significant association between the increased expression of CD105 in tumoral epithelial cells and more advanced TNM stage (P = 0.050). Conclusions: Our results demonstrate that nuclear TWIST1 and cytoplasmic CD105 expressions in tumor cells had associations with more aggressive tumor behavior and more advanced diseases in CRC cases. © 2021, The Author(s)

    Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients

    Get PDF
    To explore the proper prognostic markers for the likelihood of metastasis in CRC patients. Seventy-seven fresh CRC samples were collected to evaluate the mRNA level of the selected marker using Real-time PCR. Moreover, 648 formalin-fixed paraffin-embedded CRC tissues were gathered to evaluate protein expression by immunohistochemistry (IHC) on tissue microarrays. The results of Real-Time PCR showed that low expression of Talin1 was significantly associated with advanced TNM stage (p = 0.034) as well as gender (p = 0.029) in mRNA levels. Similarly, IHC results indicated that a low level of cytoplasmic expression of Talin1 was significantly associated with advanced TNM stage (p = 0.028) as well as gender (p = 0.009) in CRC patients. Moreover, decreased expression of cytoplasmic Talin1 protein was found to be a significant predictor of worse disease-specific survival (DSS) (p = 0.011) in the univariate analysis. In addition, a significant difference was achieved (p = 0.039) in 5-year survival rates of DSS: 65 for low, 72 for moderate, and 88 for high Talin1 protein expression. Observations showed that lower expression of Talin1 at both the gene and protein level may drive the disparity of CRC patients� outcomes via worse DSS and provide new insights into the development of progression indicators because of its correlation with increased tumor aggressiveness. © 2020, The Author(s)

    9 GeV energy gain in a beam-driven plasma wakefield accelerator

    No full text
    International audienceAn electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge

    Benign prostatic hyperplasia treatment using plasmonic nanoparticles irradiated by laser in a rat model

    Get PDF
    Objective: In the current study we have stimulated the efficacy of plasmonic nanoparticles (NPs) by laser hyperthermia to achieve a less invasive method for tumor photothermal therapy of benign prostatic hyperplasia (BPH). Methods: The levels of apoptosis on induced BPH in rats were assessed after treatment and revealed and recorded by various assayed. Moreover, the expression of caspases was considered to demonstrate the apoptotic pathways due to laser induced plasmonic NPs. Results: In the Laser + NPs group prostate size of induced BPH decreased. Laser + NPs also decreased prostate specific antigen in comparison with the BPH groups. Furthermore, Laser + NPs attenuated BPH histopathologic indices in the rats. Laser + NPs induced apoptosis in prostatic epithelial cells via caspase-1 pathway. Conclusions: Altogether, the approach and findings from this study can be applied to introduce the laser irritated NPs method as a novel and less invasive therapy for patients suffering from BP

    High-field plasma acceleration in a high-ionization-potential gas

    No full text
    International audiencePlasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV/m, over ~20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources

    Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    No full text
    International audiencePlasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV/m is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations
    corecore