14 research outputs found

    Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash

    Get PDF
    The effects that the fly ash addition has on the behavior of thermally resistant corundum concrete were discussed. Experimental program implied production of two refractory composites: "referent" concrete from 20 % of high-aluminate cement and 80 % of corundum aggregate, "recycled" concrete from 10 % of high-aluminate cement, 20 % of lignite coal ash, and 70 % of corundum aggregate. The fly ash was mechanically activated by a vibratory disk mill. In the concrete matrix, the ash had a role of cement partial replacement and microfiller. The mechanical and thermal properties of the concretes were studied at temperatures ranging from ambient to 1,400 A degrees C as adopted maximum. Mechanisms of thermally induced processes were observed by differential thermal analysis at 10, 20, and 30 A degrees C min(-1) heating rates. Referent and recycled concretes showed differences in calculated activation energies. The variations in refractory concretes performances were discussed with support of scanning electron microscope imagining and X-ray diffraction results. The recycled ash concrete exhibited properties that met the requirements for the castables, which proves it suitable for use in severe conditions at high temperature and highlights the reusing principle and possibility of cleaner and economically sustainable production
    corecore