92 research outputs found

    High-dimensional Clustering onto Hamiltonian Cycle

    Full text link
    Clustering aims to group unlabelled samples based on their similarities. It has become a significant tool for the analysis of high-dimensional data. However, most of the clustering methods merely generate pseudo labels and thus are unable to simultaneously present the similarities between different clusters and outliers. This paper proposes a new framework called High-dimensional Clustering onto Hamiltonian Cycle (HCHC) to solve the above problems. First, HCHC combines global structure with local structure in one objective function for deep clustering, improving the labels as relative probabilities, to mine the similarities between different clusters while keeping the local structure in each cluster. Then, the anchors of different clusters are sorted on the optimal Hamiltonian cycle generated by the cluster similarities and mapped on the circumference of a circle. Finally, a sample with a higher probability of a cluster will be mapped closer to the corresponding anchor. In this way, our framework allows us to appreciate three aspects visually and simultaneously - clusters (formed by samples with high probabilities), cluster similarities (represented as circular distances), and outliers (recognized as dots far away from all clusters). The experiments illustrate the superiority of HCHC

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure

    Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity

    Full text link
    In this paper, we study slowly rotating black hole solutions in Lovelock gravity (n=3). These exact slowly rotating black hole solutions are obtained in uncharged and charged cases, respectively. Up to the linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the uncharged black holes get no corrections from rotation. In charged case, we compute magnetic dipole moment and gyromagnetic ratio of the black holes. It is shown that the gyromagnetic ratio keeps invariant after introducing the Gauss-Bonnet and third order Lovelock interactions.Comment: 14 pages, no figur

    Generalized Contour Dynamics: A Review

    Get PDF
    Contour dynamics is a computational technique to solve for the motion of vortices in incompressible inviscid flow. It is a Lagrangian technique in which the motion of contours is followed, and the velocity field moving the contours can be computed as integrals along the contours. Its best-known examples are in two dimensions, for which the vorticity between contours is taken to be constant and the vortices are vortex patches, and in axisymmetric flow for which the vorticity varies linearly with distance from the axis of symmetry. This review discusses generalizations that incorporate additional physics, in particular, buoyancy effects and magnetic fields, that take specific forms inside the vortices and preserve the contour dynamics structure. The extra physics can lead to time-dependent vortex sheets on the boundaries, whose evolution must be computed as part of the problem. The non-Boussinesq case, in which density differences can be important, leads to a coupled system for the evolution of both mean interfacial velocity and vortex sheet strength. Helical geometry is also discussed, in which two quantities are materially conserved and whose evolution governs the flow

    Rehabilitation of hand function after spinal cord injury using a novel handgrip device: a pilot study

    Get PDF
    BackgroundActivity-based therapy (ABT) for patients with spinal cord injury (SCI), which consists of repetitive use of muscles above and below the spinal lesion, improves locomotion and arm strength. Less data has been published regarding its effects on hand function. We sought to evaluate the effects of a weekly hand-focused therapy program using a novel handgrip device on grip strength and hand function in a SCI cohort.MethodsPatients with SCI were enrolled in a weekly program that involved activities with the MediSens (Los Angeles, CA) handgrip. These included maximum voluntary contraction (MVC) and a tracking task that required each subject to adjust his/her grip strength according to a pattern displayed on a computer screen. For the latter, performance was measured as mean absolute accuracy (MAA). The Spinal Cord Independence Measure (SCIM) was used to measure each subject's independence prior to and after therapy.ResultsSeventeen patients completed the program with average participation duration of 21.3 weeks. The cohort included patients with American Spinal Injury Association (ASIA) Impairment Scale (AIS) A (n = 12), AIS B (n = 1), AIS C (n = 2), and AIS D (n = 2) injuries. The average MVC for the cohort increased from 4.1 N to 21.2 N over 20 weeks, but did not reach statistical significance. The average MAA for the cohort increased from 9.01 to 21.7% at the end of the study (p = .02). The cohort's average SCIM at the end of the study was unchanged compared to baseline.ConclusionsA weekly handgrip-based ABT program is feasible and efficacious at increasing hand task performance in subjects with SCI

    Identifying topological corner states in two-dimensional metal-organic frameworks

    No full text
    Abstract Due to the diversity of molecular building blocks, the two-dimensional (2D) metal-organic frameworks (MOFs) are ideal platforms to realize exotic lattice models in condensed matter theory. In this work, we demonstrate the universal existence of topological corner states in 2D MOFs with a star lattice configuration, and confirm the intriguing higher-order nontrivial topology in the energy window between two Kagome-bands, or between Dirac-band and four-band. Furthermore, combining first-principles calculations and scanning tunneling microscopy measurements, the unique topological corner state is directly identified in monolayer Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) grown on the Au(111) substrate. Our results not only illustrate the first organic topological state in the experiments, but also offer an exciting opportunity to study higher-order topology in 2D MOFs with the large insulating band gap
    • …
    corecore