49,751 research outputs found

    Why I Hate Parties

    Full text link

    Bounding the Tau Neutrino Magnetic Moment from Single Photon Searches at LEP

    Full text link
    We show that single photon searches at LEP constrain the tau neutrino magnetic moment to be less than O(10−6) μB{\cal O}(10^{-6})~\mu_B. This bound is competitive with low energy (s≃(30 GeV)2s\simeq (30~GeV)^2) single photon searches.Comment: 5 pgs. LaTeX, one reference fixed in revised version, JHU-TIPAC-940004, UM-TH-94-1

    Recent achievements in ab initio modelling of liquid water

    Full text link
    The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.Comment: 23 pages, 17 figure

    Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water

    Full text link
    Interpretation of the X-ray spectra of water as evidence for its asymmetric structure has challenged the conventional symmetric nearly-tetrahedral model and initiated an intense debate about the order and symmetry of the hydrogen bond network in water. Here, we present new insights into the nature of local interactions in water obtained using a novel energy decomposition method. Our simulations reveal that while a water molecule forms, on average, two strong donor and two strong acceptor bonds, there is a significant asymmetry in the energy of these contacts. We demonstrate that this asymmetry is a result of small instantaneous distortions of hydrogen bonds, which appear as fluctuations on a timescale of hundreds of femtoseconds around the average symmetric structure. Furthermore, we show that the distinct features of the X-ray absorption spectra originate from molecules with high instantaneous asymmetry. Our findings have important implications as they help reconcile the symmetric and asymmetric views on the structure of water.Comment: Accepted by Nature Commu

    SU(3) Family Gauge Symmetry and the Axion

    Get PDF
    We analyze the structure of a recently proposed effective field theory (EFT) for the generation of quark and lepton mass ratios and mixing angles, based on the spontaneous breaking of an SU(3) family gauge symmetry at a high scale F. We classify the Yukawa operators necessary to seed the masses, making use of the continuous global symmetries that they preserve. One global U(1), in addition to baryon number and electroweak hypercharge, remains unbroken after the inclusion of all operators required by standard-model-fermion phenomenology. An associated vacuum symmetry insures the vanishing of the first-family quark and charged-lepton masses in the absence of the family gauge interaction. If this U(1) symmetry is taken to be exact in the EFT, broken explicitly by only the QCD-induced anomaly, and if the breaking scale F is taken to lie in the range 10 to 9 - 10 to 12 GeV, then the associated Nambu-Goldstone boson is a potential QCD axion.Comment: References added and clarifications in Vacuum Structure sectio

    Neutrinos and SU(3) Family Gauge Symmetry

    Get PDF
    We include the standard-model (SM) leptons in a recently proposed framework for the generation of quark mass ratios and Cabibbo-Kobayashi-Maskawa (CKM) mixing angles from an SU(3) family gauge interaction. The set of SM-singlet scalar fields describing the spontaneous breaking is the same as employed for the quark sector. The imposition at tree-level of the experimentally correct Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix, in the form of a tri-bi maximal structure, fixes several of the otherwise free parameters and renders the model predictive. The normal hierarchy among the neutrino masses emerges from this scheme.Comment: 9 pages, 3 tables; a comment added to clarify the effects of additional Yukawa operators; final version in PR
    • …
    corecore