We analyze the structure of a recently proposed effective field theory (EFT)
for the generation of quark and lepton mass ratios and mixing angles, based on
the spontaneous breaking of an SU(3) family gauge symmetry at a high scale F.
We classify the Yukawa operators necessary to seed the masses, making use of
the continuous global symmetries that they preserve. One global U(1), in
addition to baryon number and electroweak hypercharge, remains unbroken after
the inclusion of all operators required by standard-model-fermion
phenomenology. An associated vacuum symmetry insures the vanishing of the
first-family quark and charged-lepton masses in the absence of the family gauge
interaction. If this U(1) symmetry is taken to be exact in the EFT, broken
explicitly by only the QCD-induced anomaly, and if the breaking scale F is
taken to lie in the range 10 to 9 - 10 to 12 GeV, then the associated
Nambu-Goldstone boson is a potential QCD axion.Comment: References added and clarifications in Vacuum Structure sectio