201 research outputs found

    Double Tooth

    Get PDF
    The form of primary and permanent teeth can differ morphologically from that which is considered normal, completely or in some parts. The changes in tooth form can be hereditary or caused by some disease or trauma. Fusion is a union of one or more teeth during development. Gemination means that two separate morphological units were created by division of the tooth germ. The intention of this study was to state the prevalence of double teeth (fusion and gemination) among the persons tested, as to gender, distribution in the maxilla or mandible, and whether the anomaly occurred bilaterally or unilaterally. The results of this investigation have shown that in a total of examined 3,517 plaster models, a prevalence of double teeth was 0.2%. 57.2% of them were fusioned and 42.9% geminated

    Planting a Lyman alpha forest on AbacusSummit

    Get PDF
    The full-shape correlations of the Lyman alpha (Ly α) forest contain a wealth of cosmological information through the Alcock-Paczyński effect. However, these measurements are challenging to model without robustly testing and verifying the theoretical framework used for analysing them. Here, we leverage the accuracy and volume of the N-body simulation suite AbacusSummit to generate high-resolution Ly α skewers and quasi-stellar object (QSO) catalogues. One of the main goals of our mocks is to aid in the full-shape Ly α analysis planned by the Dark Energy Spectroscopic Instrument (DESI) team. We provide optical depth skewers for six of the fiducial cosmology base-resolution simulations (, N = 69123) at z = 2.5. We adopt a simple recipe based on the Fluctuating Gunn-Peterson Approximation (FGPA) for constructing these skewers from the matter density in an N-body simulation and calibrate it against the 1D and 3D Ly α power spectra extracted from the hydrodynamical simulation IllustrisTNG (TNG;, N = 25003). As an important application, we study the non-linear broadening of the baryon acoustic oscillation (BAO) peak and show the cross-correlation between DESI-like QSOs and our Ly α forest skewers. We find differences on small scales between the Kaiser approximation prediction and our mock measurements of the Ly α × QSO cross-correlation, which would be important to account for in upcoming analyses. The AbacusSummit Ly α forest mocks open up the possibility for improved modelling of cross-correlations between Ly α and cosmic microwave background (CMB) lensing and Ly α and QSOs, and for forecasts of the 3-point Ly α correlation function. Our catalogues and skewers are publicly available on Globus via the National Energy Research Scientific Computing Center (NERSC) (full link under the section 'Data Availability')

    Changing-look Active Galactic Nuclei from the Dark Energy Spectroscopic Instrument. I. Sample from the Early Data

    Get PDF
    \ua9 2024. The Author(s). Published by the American Astronomical Society.Changing-look active galactic nuclei (CL AGNs) can be generally confirmed by the emergence (turn-on) or disappearance (turn-off) of broad emission lines (BELs), associated with a transient timescale (about 100 ∼ 5000 days) that is much shorter than predicted by traditional accretion disk models. We carry out a systematic CL AGN search by crossmatching the spectra coming from the Dark Energy Spectroscopic Instrument and the Sloan Digital Sky Survey. Following previous studies, we identify CL AGNs based on Hα, Hβ, and Mg ii at z ≤ 0.75 and Mg ii, C iii], and C iv at z > 0.75. We present 56 CL AGNs based on visual inspection and three selection criteria, including 2 Hα, 34 Hβ, 9 Mg ii, 18 C iii], and 1 C iv CL AGN. Eight cases show simultaneous appearances/disappearances of two BELs. We also present 44 CL AGN candidates with significant flux variation of BELs, but remaining strong broad components. In the confirmed CL AGNs, 10 cases show additional CL candidate features for different lines. In this paper, we find: (1) a 24:32 ratio of turn-on to turn-off CL AGNs; (2) an upper-limit transition timescale ranging from 330 to 5762 days in the rest frame; and (3) the majority of CL AGNs follow the bluer-when-brighter trend. Our results greatly increase the current CL census (∼30%) and would be conducive to exploring the underlying physical mechanism

    Synthetic light-cone catalogues of modern redshift and weak lensing surveys waith abacussummit

    Get PDF
    The joint analysis of different cosmological probes, such as galaxy clustering and weak lensing, can potentially yield invaluable insights into the nature of the primordial Universe, dark energy, and dark matter. However, the development of high-fidelity theoretical models is a necessary stepping stone. Here, we present public high-resolution weak lensing maps on the light-cone, generated using the N-body simulation suite abacussummit, and accompanying weak lensing mock catalogues, tuned to the Early Data Release small-scale clustering measurements of the Dark Energy Spectroscopic Instrument. Available in this release are maps of the cosmic shear, deflection angle, and convergence fields at source redshifts ranging from z = 0.15 to 2.45 as well as cosmic microwave background convergence maps for each of the 25 base-resolution simulations (and Npart = 69123) as well as for the two huge simulations (and Npart = 86403) at the fiducial abacussummit cosmology. The pixel resolution of each map is 0.21 arcmin, corresponding to a healpix Nside of 16 384. The sky coverage of the base simulations is an octant until z ≈ 0.8 (decreasing to about 1800 deg2 at z ≈ 2.4), whereas the huge simulations offer full-sky coverage until z ≈ 2.2. Mock lensing source catalogues are sampled matching the ensemble properties of the Kilo-Degree Survey, Dark Energy Survey, and Hyper Suprime-Cam data sets. The mock catalogues are validated against theoretical predictions for various clustering and lensing statistics, such as correlation multipoles, galaxy-shear, and shear-shear, showing excellent agreement. All products can be downloaded via a Globus endpoint (see Data Availability section)

    Validation of semi-analytical, semi-empirical covariance matrices for two-point correlation function for early DESI data

    Get PDF
    We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of luminous red galaxies (LRGs) data collected during the initial 2 months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple effective Zel'dovich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail, highlighting their interpretation and statistical properties caused by sample variance, in particular, non-trivial expectation values of certain metrics even when the external covariance estimate is perfect. With improved mocks and validation techniques, we confirm a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for comparable data sets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF measurements from the data itself. The code used in this paper is publicly available at https://github.com/oliverphilcox/RascalC

    Astrometric Calibration and Performance of the Dark Energy Spectroscopic Instrument Focal Plane

    Get PDF
    The Dark Energy Spectroscopic Instrument, consisting of 5020 robotic fiber positioners and associated systems on the Mayall telescope at Kitt Peak, Arizona, is carrying out a survey to measure the spectra of 40 million galaxies and quasars and produce the largest 3D map of the universe to date. The primary science goal is to use baryon acoustic oscillations to measure the expansion history of the universe and the time evolution of dark energy. A key function of the online control system is to position each fiber on a particular target in the focal plane with an accuracy of 11 μm rms 2D. This paper describes the set of software programs used to perform this function along with the methods used to validate their performance

    The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument

    Get PDF
    In 2021 May, the Dark Energy Spectroscopic Instrument (DESI) began a 5 yr survey of approximately 50 million total extragalactic and Galactic targets. The primary DESI dark-time targets are emission line galaxies, luminous red galaxies, and quasars. In bright time, DESI will focus on two surveys known as the Bright Galaxy Survey and the Milky Way Survey. DESI also observes a selection of “secondary” targets for bespoke science goals. This paper gives an overview of the publicly available pipeline (desitarget) used to process targets for DESI observations. Highlights include details of the different DESI survey targeting phases, the targeting ID (TARGETID) used to define unique targets, the bitmasks used to indicate a particular type of target, the data model and structure of DESI targeting files, and examples of how to access and use the desitarget code base. This paper will also describe “supporting” DESI target classes, such as standard stars, sky locations, and random catalogs that mimic the angular selection function of DESI targets. The DESI target-selection pipeline is complex and sizable; this paper attempts to summarize the most salient information required to understand and work with DESI targeting data
    corecore