928 research outputs found

    Detecting the intermediate-mass Higgs boson through the associate production channel pp --> t + anti-t + H + X

    Full text link
    We examine the detection of the intermediate-mass Higgs boson (IMH) at LHC through the associate production channel pp-->t+(anti-t)+H+X-->l+photon+ photon+X'. It is shown that by applying kinematic cuts or b-tagging on the final state jets, the main backgrounds of W(-->l+nu)+photon+photon+(n-jet) can be reduced substantially without significant loss of signals. It is possible to detect the Higgs boson at LHC through the pp-->t+(anti-t)+H+X channel using a modest photon detector with mass resolution of about 3% of the photon pair invariant mass.Comment: 10 pages, standard LaTex fil

    Strain engineering for GeSn/SiGeSn multiple quantum well laser structures

    Get PDF
    Optically pumped GeSn laser have been realized, thus alloying of group IV elements germanium (Ge) and tin (Sn) has a large potential to be a solution for Si-photonics, since a direct bandgap for Sn incorporations above ~9 at.% is obtained [1]. The value of the bandgap can further be controlled by adding Si into the mix, which can be exploited for the formation of heterostructures for carrier confinement [2]. However, a sufficiently large difference in energy ΔE between the indirect L-valley and the direct Г-valley is required to achieve room temperature lasing. Recently lasing was reported at 180K in GeSn alloys with Sn concentrations as high as 22,3% [3]. Alternatively ΔE can be increased by adding tensile strain to the GeSn layers. Here we will discuss that an appropriate combination of Sn concentration and strain will be advantageous to tailor gain and temperature stability of the structures. Please click Additional Files below to see the full abstract

    Design of a high-speed germanium-tin absorption modulator at mid-infrared wavelengths

    Get PDF
    We propose a high-speed electro-absorption modulator based on a direct bandgap Ge0.875Sn0.125 alloy operating at mid-infrared wavelengths. Enhancement of the Franz-Keldysh-effect by confinement of the applied electric field to GeSn in a reverse-biased junction results in 3.2dB insertion losses, a 35GHz bandwidth and a 6dB extinction ratio for a 2Vpp drive signal

    A double parton scattering background to Higgs boson production at the LHC

    Get PDF
    The experimental capability of recognizing the presence of b quarks in complex hadronic final states has addressed the attention towards final states with b\bar{b} pairs for observing the production of the Higgs boson at the LHC, in the intermediate Higgs mass range.We point out that double parton scattering processes are going to represent a sizeable background to the process.Comment: 9 pages, 2 figure

    Distinguishing WH and WBBbar production at the Fermilab Tevatron

    Full text link
    The production of a Higgs boson in association with a W-boson is the most likely process for the discovery of a light Higgs at the Fermilab Tevatron. Since it decays primarily to b-quark pairs, the principal background for this associated Higgs production process is WBBbar, where the BBbar pair comes from the splitting of an off mass shell gluon. In this paper we investigate whether the spin angular correlations of the final state particles can be used to separate the Higgs signal from the WBBbar background. We develop a general numerical technique which allows one to find a spin basis optimized according to a given criterion, and also give a new algorithm for reconstructing the W longitudinal momentum which is suitable for the WH and WBBbar processes.Comment: latex, 12 pages, 19 postscript figure

    Associated Production of Higgs and Weak Bosons, with H -> b\bar b, at Hadron Colliders

    Full text link
    We consider the search for the Higgs boson at a high-luminosity Fermilab Tevatron, an upgraded Tevatron of energy 3.5 TeV, and the CERN Large Hadron Collider, via WH/ZHWH/ZH production followed by H -> bb~ and leptonic decay of the weak vector bosons. We show that each of these colliders can potentially observe the standard Higgs boson in the intermediate-mass range, 80 GeV <m_H < 120 GeV. This mode complements the search for and the study of the intermediate-mass Higgs boson via H -> \gamma\gamma at the LHC. In addition, it can potentially be used to observe the lightest Higgs scalar of the minimal supersymmetric model in a region of parameter space not accessible to CERN LEP II or the LHC (using h -> \gamma\gamma,ZZ^*).Comment: (changed the analysis of ZH production and the figures for susy), 17 pages + 7 figures, ILL-(TH)-94-8, BNL-6034

    Optical Transitions in Direct-Bandgap Ge1-xSnx Alloys

    Get PDF
    A comprehensive study of optical transitions in direct-bandgap Ge0.875Sn0.125 group IV alloys via photoluminescence measurements as a function of temperature, compressive strain and excitation power is performed. The analysis of the integrated emission intensities reveals a strain-dependent indirect-to-direct bandgap transition, in good agreement with band structure calculations based on the 8-band k·p and deformation potential methods. We have observed and quantified Γ valley-heavy hole and Γ valley-light hole transitions at low pumping power and low temperatures in order to verify the splitting of the valence band due to strain. We will demonstrate that the intensity evolution of these transitions supports the conclusion about the fundamental direct bandgap in compressively strained GeSn alloys. The presented investigation, thus, demonstrates that direct-bandgap group IV alloys can be directly grown on Ge-buffered Si(001) substrates despite their residual compressive strain

    Process modules for GeSn nanoelectronics with high Sn-contents

    Get PDF
    In this paper we present a systematic study of GeSn n-FETs. First, process modules such as high-k metal gate stacks and NiGeSn-metallic contacts for use as source/drain contacts are characterized and discussed. GeSn alloys of different Sn content allow the study of the capacitance-voltage (CV) and contact characteristics of both direct and indirect bandgap semiconductors. We then present GeSn n-FET devices we have fabricated. The device characterization includes temperature dependent IV characteristics. As important step towards GeSn for tunnel-FET Ge0.87Sn0.13 tunnel-diodes with negative differential resistance at reduced temperature are shown. The present work provides a base for further optimization of GeSn FET and novel tunnel FET devices

    Direct bandgap GeSn light emitting diodes for short-wave infrared applications grown on Si

    Get PDF
    The experimental demonstration of fundamental direct bandgap, group IV GeSn alloys has constituted an important step towards realization of the last missing ingredient for electronic-photonic integrated circuits, i.e. the e cient group IV laser source. In this contribution, we present electroluminescence studies of reduced-pressure CVD grown, direct bandgap GeSn light emitting diodes (LEDs) with Sn contents up to 11 at.%. Besides homojunction GeSn LEDs, complex heterojunction structures, such as GeSn/Ge multi quantum wells (MQWs) have been studied. Structural and compositional investigations con rm high crystalline quality, abrupt interfaces and tailored strain of the grown structures. While also being suitable for light absorption applications, all devices show light emission in a narrow short-wave infrared (SWIR) range. Temperature dependent electroluminescence (EL) clearly indicates a fundamentally direct bandgap in the 11 at.% Sn sample, with room temperature emission at around 0.55 eV (2.25 m). We have, however, identi ed some limitations of the GeSn/Ge MQW approach regarding emission e ciency, which can be overcome by introducing SiGeSn ternary alloys as quantum con nement barriers
    corecore