53 research outputs found
Effect of organic ligand-decorated ZnO nanoparticles as a cathode buffer layer on electricity conversion efficiency of an inverted solar cell
Efficiency improvement of the industrial scale solar cells to capture sunlight as an important renewable energy source is attracting significant attention to prevent the consumption of a finite supply of unsustainable fossil fuels. ZnO nanoparticles decorated with an imine-linked receptor have been used in the fabrication of a photocathode based on dye-sensitized solar cells for the purpose of photovoltaic efficiency enhancement. Various characterization techniques have been employed to investigate the structural, morphological, and optical behaviors of the solar cell having ZnO nanoparticles and ZnO nanoparticles decorated with an organic ligand as a photocathode layer. The decorated nanoparticles have a stable wurtzite structure and an average grain size of ∼45 nm, confirmed by the TEM image and XRD through the Scherrer equation. The ZnO sample emits wide peaks in the visible range, and the emission intensity of the ZnO-DOL sample increases along with a red-shift (0.38 eV) in the band gap. This shift can be explained using deep level transition, surface plasmon energy of a surfactant, and coupling of ZnO with local surface plasmon energy. UV-vis absorption spectra together with photoluminescence spectra confirm the higher absorption rate due to organic ligand decoration on ZnO nanoparticles. The greatest solar power-to-electricity conversion efficiency (η) of 3.48% is achieved for the ZnO-DOL sample. It is enhanced by 3.13% as compared to that of the ZnO-based solar cell. The ZnO-DOL device exhibits a higher external quantum efficiency (EQE), responsivity (Rλ), and photocurrent-to-dark current ratio; this confirms the improvement in the solar cell performance
Structural, optical and electrical evolution of Al and Ga co-doped ZnO/SiO2/glass thin film: Role of laser power density
This study investigates the characteristics of laser annealed thin films of Al-Ga co-doped zinc oxide (ZnO:Al-Ga) nanoparticles on top of SiO2/glass. The samples are synthesized using simple sol-gel, spin coating and radio frequency magnetron sputtering methods. The studies on the structural, optical and electrical properties of the pre-annealed sample and samples annealed at different power densities are conducted using a variety of characterization techniques. The samples exhibit a hexagonal wurtzite structure. Spectroscopic and nano-imaging techniques confirm that by increasing the laser power density, the crystallinity of the samples is improved and the nanoparticle size is enhanced from ∼10 nm to ∼35 nm. Spectroellipsometry is employed to calculate the refractive index, extinction coefficient, and real and imaginary components of the dielectric constant. The resistivity exhibits a minimum value at 440 mJ cm-2. Results demonstrate that the optical band gaps of the samples are between 3.29 and 3.41 eV, which are greater than that of pure bulk ZnO (band-gap of 3.21 eV). Several vibrational modes occur as a result of the dopant combination in the ZnO lattice. A discussion on the origins of modes and their intensity changes is provided. This work suggests that a laser annealing process can be an effective tool to fabricate various thin films with enhanced crystallinity. The optical and electrical properties can also be adjusted by varying the power density
Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling
<p>Abstract</p> <p>Background</p> <p>Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (<it>Pleurotus ostreatus</it>) <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml) in the absence or presence of lipopolysacharide (LPS) or concanavalin A (ConA), respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS.</p> <p>Results</p> <p>OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6), and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE<sub>2</sub>) and nitric oxide (NO) through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS <it>in vivo</it>. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ), IL-2, and IL-6 from concanavalin A (ConA)-stimulated mouse splenocytes.</p> <p>Conclusions</p> <p>Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.</p
CYLD Enhances Severe Listeriosis by Impairing IL-6/STAT3-Dependent Fibrin Production
The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-kappa B, and tissue protective factors including fibrin. However, molecular pathways connecting NF-kappa B and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-kappa B-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld(-/-) mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-kappa B-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-kappa B activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld(-/-) mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-kappa B/IL-6/STAT3 pathway and fibrin production
Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis
A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∼0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although improvements were noted in some studies with carnitine, co-enzyme Q10 and B-vitamins. Many studies suffered from limitations, including small sample sizes, referral or publication biases, and variability in protocols for selecting children for MD workup, collecting mitochondrial biomarkers and defining MD. Overall, this evidence supports the notion that mitochondrial dysfunction is associated with ASD. Additional studies are needed to further define the role of mitochondrial dysfunction in ASD
Heuristics for integrated blending optimisation in a mining supply chain
In a mining supply chain, products from mines are blended at port terminals to ensure that a set of blending targets (such as grade and qualities) are achieved. The production scheduling problem of each individual mine and the blending problem for a network of mines and ports constitute the integrated blending optimisation, which involves modelling of material flows from mine-side pits to port-side stockpiles. Due to the problem scale and the bilinear constraints for blending behaviours, the problem is computationally hard to solve by any available optimisers. This paper extends upon a decomposition-based algorithm in the literature, which was first to solve the blending problem for a network of multiple mines and ports over multiple time periods. In our paper, a prune routine is proposed to progressively update the mixed integer program of the production scheduling problem for each mine during a rolling-horizon heuristic. Experiments have shown that this extension produces solutions of higher quality than the original algorithm. Furthermore, a ranking-based topological sorting heuristic is presented for selecting units of mineral deposits, known as ’blocks’. Experiments have shown that the average computation time can be reduced by 75.97% when this heuristic is implemented. On top of these extensions, an adaptive algorithm is adopted from the decomposition-based algorithm, featuring faster convergence and higher solution quality at the same time. Comparing our results to the literature, our adaptive algorithm, on average, yields an improvement in solution quality by 12.67% while reducing computation time by 65.09%
Role of outer layer configuration on saline concentration sensitivity of optical fiber probe coated with ZnO/Ag nano-heterostructure
Accurate monitoring of concentration changes in saline solution is prerequisite to control and minimize the negative effect of salt in water resources. A highly sensitive refractive index (RI) sensor is fabricated via coating a novel zinc oxide/silver (ZnO/Ag) bi-layer having different ZnO nanostructure shapes as an outer layer on partially unclad silica fiber. When the ZnO layer contact to different saline concentrations, its band-gap is altered and modifies the RI of the ZnO layer. The coupling of the evanescent light with surface plasmon resonance (SPR) wave and absorption of evanescent light by the external medium are responsible for observing wavelength shift and intensity changes in the detected spectrum. For vertically oriented ZnO nanorods sample when IR light is used as a light source, by increasing the saline concentration from 0% to 20%, the wavelength is shifted from 1564.4 nm to 1573.3 nm and the intensity is dropped to 77% of its maximum value. The superior sensitivity obtained for vertically oriented ZnO sample is attributed to the larger surface area, higher average dispersion relation, better crystallinity, larger surface roughness and greater adhesion (interaction) with salt molecules compare to the other samples. The experimentally demonstrated highest intensity and wavelength sensitivity are 36 dB/RIU and 255 nm/RIU respectively
Optical fiber sensor for glycoprotein detection based on localized surface plasmon resonance of discontinuous ag-deposited nanostructure
A combination of the optical fiber technology and the art of material miniaturization provides a label-free glycoprotein sensor with an excellent range of detection. This study examines the fabrication of a novel glycoprotein sensor based on partially-unclad optical fiber and discontinuous Ag nanostructure deposition via electroless mechanism. The performance of the sensor is assessed by exposing the sensing part of the fiber to a starch-eliminated ipomoea batatas (sweet potato) solution. Interaction of evanescent light with localized surface plasmon wave and interference of core-cladding mode are responsible for wavelength shift and amplitude modulation. Increasing the glycoprotein concentration reduces the contact angle between Ag and analyte due to the hydrophobicity nature of these two materials, which boosts their interaction and develops the sensitivity. The high sensitivity of 30.76 nm/ppm and 19.31 dB/ppm for wavelength and intensity was achieved, respectively, for a sensor with 2 cm active length. The detection range and response time of the sensor are 1.625 × 10−4 ppm and 574.16 s/ppm, respectively
Efficient visible photoluminescence from self-assembled ge QDs embedded in silica matrix
Measuring the growth parameters of Ge quantum dots (QDs) embedded in SiO2/Si hetero-structure is prerequisite for developing the optoelectronic devices such as photovoltaics and sensors. Their optical properties can be tuned by tailoring the growth morphology and structures, where the growth parameters optimizations still need to be explored. We determine the effect of annealing temperature on surface morphology, structures and optical properties of Ge/SiO2/Si hetero-structure. Samples are grown via rf magnetron sputtering and subsequent characterizations are made using imaging and spectroscopic techniques
Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots
The influences of thermal annealing on the structural and optical features of radio frequency (rf) magnetron sputtered self-assembled Ge quantum dots (QDs) on Si (100) are investigated. Preferentially oriented structures of Ge along the (220) and (111) directions together with peak shift and reduced strain (4.9% to 2.7%) due to post-annealing at 650 °C are discerned from x-ray differaction (XRD) measurement. Atomic force microscopy (AFM) images for both pre-annealed and post-annealed (650 °C) samples reveal pyramidal-shaped QDs (density ~ 0.26× 1011 cm−2) and dome-shape morphologies with relatively high density ~ 0.92 × 1011 cm−2, respectively. This shape transformation is attributed to the mechanism of inter-diffusion of Si in Ge interfacial intermixing and strain non-uniformity. The annealing temperature assisted QDs structural evolution is explained using the theory of nucleation and growth kinetics where free energy minimization plays a pivotal role. The observed red-shift ~ 0.05 eV in addition to the narrowing of the photoluminescence peaks results from thermal annealing, and is related to the effect of quantum confinement. Furthermore, the appearance of a blue-violet emission peak is ascribed to the recombination of the localized electrons in the Ge-QDs/SiO2 or GeOx and holes in the ground state of Ge dots. Raman spectra of both samples exhibit an intense Ge–Ge optical phonon mode which shifts towards higher frequency compared with those of the bulk counterpart. An experimental Raman profile is fitted to the models of phonon confinement and size distribution combined with phonon confinement to estimate the mean dot sizes. A correlation between thermal annealing and modifications of the structural and optical behavior of Ge QDs is established. Tunable growth of Ge QDs with superior properties suitable for optoelectronic applications is demonstrated
- …