9 research outputs found

    Quantum theory of incompatible observations

    Get PDF
    Maximum likelihood principle is shown to be the best measure for relating the experimental data with the predictions of quantum theory.Comment: 3 page

    Molecular detection of Coxiella burnetii infection in small mammals from Moshi Rural and Urban Districts, northern Tanzania

    Get PDF
    Coxiella burnetii is an obligate intracellular bacterium that causes Q fever, a zoonotic disease of public health importance. In northern Tanzania, Q fever is a known cause of human febrile illness, but little is known about its distribution in animal hosts. We used a quantitative real‐time PCR (qPCR) targeting the insertion element IS1111 to determine the presence and prevalence of C. burnetii infections in small mammals trapped in 12 villages around Moshi Rural and Moshi Urban Districts, northern Tanzania. A total of 382 trapped small mammals of seven species were included in the study; Rattus rattus (n = 317), Mus musculus (n = 44), Mastomys natalensis (n = 8), Acomys wilson (n = 6), Mus minutoides (n = 3), Paraxerus flavovottis (n = 3) and Atelerix albiventris (n = 1). Overall, 12 (3.1%) of 382 (95% CI: 1.6–5.4) small mammal spleens were positive for C. burnetii DNA. Coxiella burnetii DNA was detected in five of seven of the small mammal species trapped; R. rattus (n = 7), M. musculus (n = 1), A. wilson (n = 2), P. flavovottis (n = 1) and A. albiventris (n = 1). Eleven (91.7%) of twelve (95% CI: 61.5–99.8) C. burnetii DNA positive small mammals were trapped within Moshi Urban District. These findings demonstrate that small mammals in Moshi, northern Tanzania are hosts of C. burnetii and may act as a source of C. burnetii infection to humans and other animals. This detection of C. burnetii infections in small mammals should motivate further studies into the contribution of small mammals to the transmission of C. burnetii to humans and animals in this region

    Extracellular metabolism of sucrose in a submerged culture of Claviceps purpurea: formation of monosaccharides and clavine alkaloids.

    No full text
    Transformation of extracellular sucrose during cultivation of Claviceps purpurea led to the formation of mono- and oligosaccharides. Maltose was a suitable substrate for submerged fermentation of alkaloids. Fermentation in a medium with maltose was characterized by an insignificant formation of glucans, intensive sporulation, suspension growth of mycelium, and a higher formation of elymoclavine. Glucose alone yielded low levels of total alkaloids and high glucan formation; on the other hand, glucose promoted the formation of elymoclavine

    Tick-borne zoonoses in the Order Rickettsiales and Legionellales in Iran: A systematic review

    No full text

    Die Antimykotica

    No full text
    corecore