4,925 research outputs found
Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar
We present a technique and results of 2-D imaging of Faraday rotation and total electron content using spaceborne L band polarimetric synthetic aperture radar (PolSAR). The results are obtained by processing PolSAR data collected using the Phased Array type L-band Synthetic Aperture Radar (PALSAR) on board the Advanced Land Observation Satellite. Distinguished ionospheric inhomogeneities are captured in 2-D images from space with relatively high resolutions of hundreds of meters to a couple of kilometers in auroral-, middle-, and low-latitude regions. The observed phenomena include aurora-associated ionospheric enhancement arcs, the middle-latitude trough, traveling ionospheric disturbances, and plasma bubbles, as well as ionospheric irregularities. These demonstrate a new capability of spaceborne synthetic aperture radar that will not only provide measurements to correction of ionospheric effects in Earth science imagery but also significantly benefit ionospheric studies
Vortex Phase Diagram of Layered Superconductor Cu0.03TaS2 for H || c
The magnetization and anisotropic electrical transport properties have been
measured in high quality Cu0.03TaS2 single crystal. A pronounced peak effect
has been observed, indicating that the high quality and homogeneity are vital
to peak effect. A kink has been observed in the magnetic field H dependence of
the in-plane resistivity {\rho}ab for H || c, which corresponds to a transition
from activated to diffusive behavior of vortex liquid phase. In the diffusive
regime of the vortex liquid phase, the in-plane resistivity {\rho}ab shows
{\rho}ab H0.3 relation, which does not follow the Bardeen-Stephen law
for free flux flow. Finally, a simplified vortex phase diagram of Cu0.03TaS2
for H || c is given.Comment: 28 pages, 9 figure
Statistics of Lyapunov exponent in one-dimensional layered systems
Localization of acoustic waves in a one dimensional water duct containing
many randomly distributed air filled blocks is studied. Both the Lyapunov
exponent and its variance are computed. Their statistical properties are also
explored extensively. The results reveal that in this system the single
parameter scaling is generally inadequate no matter whether the frequency we
consider is located in a pass band or in a band gap. This contradicts the
earlier observations in an optical case. We compare the results with two
optical cases and give a possible explanation of the origin of the different
behaviors.Comment: 6 pages revtex file, 6 eps figure
Anomalies of upper critical field in the spinel superconductor LiTiO
High-field electrical transport and point-contact tunneling spectroscopy were
used to investigate superconducting properties of the unique spinel oxide,
LiTiO films with various oxygen content. We find that the
upper critical field gradually increases as more oxygen
impurities are brought into the samples by carefully tuning the deposition
atmosphere. It is striking that although the superconducting transition
temperature and energy gap are almost unchanged, an astonishing isotropic
up to 26 Tesla is observed in oxygen-rich sample, which
is doubled compared to the anoxic sample and breaks the Pauli limit. Such
anomalies of were rarely reported in other three dimensional
superconductors. Combined with all the anomalies, three dimensional spin-orbit
interaction induced by tiny oxygen impurities is naturally proposed to account
for the remarkable enhancement of in oxygen-rich
LiTiO films. Such mechanism could be general and therefore
provides ideas for optimizing practical superconductors with higher
Field Driven Quantum Criticality in the Spinel Magnet ZnCrSe
We report detailed dc and ac magnetic susceptibilities, specific heat, and
thermal conductivity measurements on the frustrated magnet ZnCrSe. At
low temperatures, with increasing magnetic field, this spinel material goes
through a series of spin state transitions from the helix spin state to the
spiral spin state and then to the fully polarized state. Our results indicate a
direct quantum phase transition from the spiral spin state to the fully
polarized state. As the system approaches the quantum criticality, we find
strong quantum fluctuations of the spins with the behaviors such as an
unconventional -dependent specific heat and temperature independent mean
free path for the thermal transport. We complete the full phase diagram of
ZnCrSe under the external magnetic field and propose the possibility of
frustrated quantum criticality with extended densities of critical modes to
account for the unusual low-energy excitations in the vicinity of the
criticality. Our results reveal that ZnCrSe is a rare example of 3D
magnet exhibiting a field-driven quantum criticality with unconventional
properties.Comment: 6 pages, 4 figures + supplementary: 2 pages, 1 figure; accepted for
publication in Phys. Rev. Let
Incommensurate spin correlations in highly oxidized cobaltates LaSrCoO
We observe quasi-static incommensurate magnetic peaks in neutron scattering
experiments on layered cobalt oxides La2-xSrxCoO4 with high Co oxidation states
that have been reported to be paramagnetic. This enables us to measure the
magnetic excitations in this highly hole-doped incommensurate regime and
compare our results with those found in the low-doped incommensurate regime
that exhibit hourglass magnetic spectra. The hourglass shape of magnetic
excitations completely disappears given a high Sr doping. Moreover, broad
low-energy excitations are found, which are not centered at the incommensurate
magnetic peak positions but around the quarter-integer values that are
typically exhibited by excitations in the checkerboard charge ordered phase.
Our findings suggest that the strong inter-site exchange interactions in the
undoped islands are critical for the emergence of hourglass spectra in the
incommensurate magnetic phases of La2-xSrxCoO4.Comment: http://www.nature.com/articles/srep25117
Anomalous thermoelectric effects of ZrTe in and beyond the quantum limit
Thermoelectric effects are more sensitive and promising probes to topological
properties of emergent materials, but much less addressed compared to other
physical properties. Zirconium pentatelluride (ZrTe) has inspired active
investigations recently because of its multiple topological nature. We study
the thermoelectric effects of ZrTe in a magnetic field and find several
anomalous behaviors. The Nernst response has a steplike profile near zero field
when the charge carriers are electrons only, suggesting the anomalous Nernst
effect arising from a nontrivial profile of Berry curvature. Both the
thermopower and Nernst signal exhibit exotic peaks in the strong-field quantum
limit. At higher magnetic fields, the Nernst signal has a sign reversal at a
critical field where the thermopower approaches to zero. We propose that these
anomalous behaviors can be attributed to the Landau index inversion, which is
resulted from the competition of the dependence of the Dirac-type
Landau bands and linear- dependence of the Zeeman energy ( is the
magnetic field). Our understanding to the anomalous thermoelectric properties
in ZrTe opens a new avenue for exploring Dirac physics in topological
materials.Comment: 6 pages, 4 figure
Remarks on the Scalar Graviton Decoupling and Consistency of Horava Gravity
Recently Horava proposed a renormalizable gravity theory with higher
derivatives by abandoning the Lorenz invariance in UV. But there have been
confusions regarding the extra scalar graviton mode and the consistency of the
Horava model. I reconsider these problems and show that, in the Minkowski
vacuum background, the scalar graviton mode can be consistency decoupled from
the usual tensor graviton modes by imposing the (local) Hamiltonian as well as
the momentum constraints.Comment: Some clarifications regarding the projectable case added, Typos
corrected, Comments (Footnote No.9, Note Added) added, References updated,
Accepted in CQ
- …
