122 research outputs found

    Fluence dependent femtosecond quasi-particle and Eu^{2+} -spin relaxation dynamics in EuFe_{2}(As,P)_{2}

    Get PDF
    We investigated temperature and fluence dependent dynamics of the time resolved optical reflectivity in undoped spin-density-wave (SDW) and doped superconducting (SC) EuFe2_{2}(As,P)2_{2} with emphasis on the ordered Eu2+^{2+}-spin temperature region. The data indicate that the SDW order coexists at low temperature with the SC and Eu2+^{2+}-ferromagnetic order. Increasing the excitation fluence leads to a thermal suppression of the Eu2+^{2+}-spin order due to the crystal-lattice heating while the SDW order is suppressed nonthermally at a higher fluence

    Quasiparticle relaxation dynamics in spin-density-wave and superconducting SmFeAsO_{1-x}F_{x} single crystals

    Full text link
    We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SmFeAsO and near-optimally doped SmFeAsO_{0.8}F_{0.2} single crystals - exhibiting spin-density wave (SDW) ordering and superconductivity respectively - using pump-probe femtosecond spectroscopy. In the undoped single crystals a single relaxation process is observed, showing a remarkable critical slowing down of the QP relaxation dynamics at the SDW transition temperature T_{SDW}\simeq125{K}. In the superconducting (SC) crystals multiple relaxation processes are present, with distinct SC state quasiparticle recombination dynamics exhibiting a BCS-like T-dependent superconducting gap, and a pseudogap (PG)-like feature with an onset above 180K indicating the existence of a pseudogap of magnitude 2\Delta_{\mathrm{PG}}\simeq120 meV above T_{\mathrm{c}}. From the pump-photon energy dependence we conclude that the SC state and PG relaxation channels are independent, implying the presence of two separate electronic subsystems. We discuss the data in terms of spatial inhomogeneity and multi-band scenarios, finding that the latter is more consistent with the present data.Comment: Replaced by the correct versio

    Orientation-dependent C60 electronic structures revealed by photoemission

    Full text link
    We observe, with angle-resolved photoemission, a dramatic change in the electronic structure of two C60 monolayers, deposited respectively on Ag (111) and (100) substrates, and similarly doped with potassium to half-filling of the C60 lowest unoccupied molecular orbital. The Fermi surface symmetry, the bandwidth, and the curvature of the dispersion at Gamma point are different. Orientations of the C60 molecules on the two substrates are known to be the main structural difference between the two monolayers, and we present new band-structure calculations for some of these orientations. We conclude that orientations play a key role in the electronic structure of fullerides.Comment: 4 pages, 4 figure
    corecore