1,568 research outputs found

    The Cauchy 5 Small, Low-Volume Lunar Shield Volcano:Evidence for Volatile Exsolution-Eruption Patterns and Type 1/Type 2 Hybrid Irregular Mare Patch Formation

    Get PDF
    The lunar shield volcano Cauchy 5, sitting at the low diameter‐height‐volume end of the population, is the only known example containing two different types of Irregular Mare Patches (IMPs) in very close association: (1) the pit crater interior Type 1 IMP composed of bleb‐like mounds surrounded by a hummocky and blocky floor unit and (2) Type 2 IMPs, small, often optically immature pits less than ~5 m deep, located on the generally block‐deficient shield flanks. A four‐phase lunar magma ascent/eruption model predicts that during a relatively brief eruption, low magma rise rates maximize volatile exsolution in lava filling the pit crater. Bubble‐rich magmas overtop the pit crater and form extremely vesicular flows on the shield flanks. Exposure of the flanking flows to vacuum produces a fragmental layer of exploded glassy bubble walls. Subsequent second boiling upon cooling of the flanking flow interiors releases additional volatiles which migrate and collect, forming magmatic foams and gas pockets. As magma rise rates slow, trapped gas and magmatic foam build up below the cooling pit crater floor. Magmatic foams are extruded to form Type 1 IMP deposits. Type 2 IMPs on the flanks are interpreted to be due primarily to subsequent impacts causing collapse of the flow surface layer into the extremely vesicle‐ and void‐rich flow interior. Anomalously young pit crater floor/shield flank crater retention ages compared with surrounding maria ages may be due to effects of Cauchy 5 substrate characteristics (extreme micro‐ and macroporosity, foamy nature, and glassy auto‐regolith) on superposed crater formation and retention

    Lunar Irregular Mare Patches:Classification, Characteristics, Geologic Settings, Updated Catalog, Origin, and Outstanding Questions

    Get PDF
    One of the most mysterious lunar features discovered during the Apollo era was Ina, a ~2 × 3-km depression composed of bleb-like mounds surrounded by hummocky and blocky terrains. Subsequent studies identified dozens of similar features in lunar maria, describing them as Irregular Mare Patches (IMPs). Due to the unusual and complex characteristics of IMPs, their specific formation mechanism is debated. To improve our understanding of the nature and origin of IMPs, we undertook an updated search and geological characterization of all IMPs and established a classification approach encompassing the full spectrum of IMPs. We present an updated catalog of 91 IMPs and survey the detailed characteristics of each IMP. We find that the majority of IMPs occur in maria emplaced over three billion years ago, contemporaneous with the peak period of global lunar volcanism. We utilized geologic context information and characteristics to establish two classification schemes for lunar IMPs: (1) geologic context: IMPs are categorized into (a) small shield volcano summit pit floor and flank, (b) linear/sinuous rille interior and adjacent exterior, and (c) typical maria; (2) characteristics: IMPs are classified into (a) “mound + floor” and (b) “pit only” types. We showed the range of characteristics of lunar IMPs was consistent with the waning-stage magmatic foam formation and extrusion scenario in different environments. Our updated catalog and classification raise several outstanding questions concerning the nature and origin of lunar IMPs. Assessing these questions will improve our knowledge of lunar thermal and geologic evolution. ©2020. American Geophysical Union. All Rights Reserved

    Mare Domes in Mare Tranquillitatis:Identification, Characterization, and Implications for Their Origin

    Get PDF
    Mare domes, small shield volcanoes typically <∼30 km diameter, are part of the spectrum of lunar volcanic features that characterize extrusive basalt deposits. We used new spacecraft data to document these in Mare Tranquillitatis, among the oldest maria and the site commonly interpreted as an ancient degraded non-mascon impact basin. We found 283 known and suspected mare domes, with the majority (n = 229) concentrated on a broad, ∼450 km circular topographic rise in eastern Mare Tranquillitatis. The domes (median diameter 5.6 km, height 68 m, volume 0.7 km3) contain summit pits (74%; median diameter 0.8 km), and exhibit minor compositional variability between domes and surrounding flows, suggesting that domes both supply and are embayed by these flows. Based on their characteristics and associations, we interpret the small shield volcanoes to have been built from individual low-volume (<∼10–100 km3), low volatile content, short duration, cooling-limited eruptions. The ∼450 km broad volcanic rise is ∼920 m high (volume ∼1.6 × 105 km3) and is interpreted to be built from multiple occurrences of small shield eruptions, a shield plains volcanism style. This implies a shallow mantle source region capable of supplying distributed dike-emplacement and eruption events over an area of 1.75 × 105 km2 early in mare volcanism history (∼3.7 Ga). The difference between Mare Tranquillitatis and younger mare-filled mascon basins is attributed to the more ancient thermal state and crustal structure of the viscously relaxed Tranquillitatis basin, and a shallower broad magma source region present in earlier lunar thermal history

    Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis

    Get PDF
    Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts.Tao Ling, Dong-Yang Yan, Yan Jiao, Hui Wang, Yao Zheng, Xueli Zheng, Jing Mao, Xi-Wen Du, Zhenpeng Hu, Mietek Jaroniec, Shi-Zhang Qia

    Geological Characterization of the Ina Shield Volcano Summit Pit Crater on the Moon:Evidence for Extrusion of Waning-Stage Lava Lake Magmatic Foams and Anomalously Young Crater Retention Ages

    Get PDF
    Ina, a distinctive ~2 × 3 km D-shaped depression, is composed of unusual bulbous-shaped mounds surrounded by optically immature hummocky/blocky floor units. The crisp appearance, optical immaturity, and low number of superposed impact craters combine to strongly suggest a geologically recent formation for Ina, but the specific formation mechanism remains controversial. We reconfirm that Ina is a summit pit crater/vent on a small shield volcano ~3.5 billion years old. Following detailed characterization, we interpret the range of Ina characteristics to be consistent with a two-component model of origin during the waning stages of summit pit eruption activities. The Ina pit crater floor is interpreted to be dominated by the products of late-stage, low-rise rate magmatic dike emplacement. Magma in the dike underwent significant shallow degassing and vesicle formation, followed by continued degassing below the solidified and highly microvesicular and macrovesicular lava lake crust, resulting in cracking of the crust and extrusion of gas-rich magmatic foams onto the lava lake crust to form the mounds. These unique substrate characteristics (highly porous aerogel-like foam mounds and floor terrains with large vesicles and void space) exert important effects on subsequent impact crater characteristics and populations, influencing (1) optical maturation processes, (2) regolith development, and (3) landscape evolution by modifying the nature and evolution of superposed impact craters and thus producing anomalously young crater retention ages. Accounting for these effects results in a shift of crater size-frequency distribution model ages fro

    Arsenic and Fluoride Exposure in Drinking Water: Children’s IQ and Growth in Shanyin County, Shanxi Province, China

    Get PDF
    BACKGROUND: Recently, in a cross-sectional study of 201 children in Araihazar, Bangladesh, exposure to arsenic (As) in drinking water has been shown to lower the scores on tests that measure children’s intellectual function before and after adjustment for sociodemographic features. OBJECTIVES: We investigated the effects of As and fluoride exposure on children’s intelligence and growth. METHODS: We report the results of a study of 720 children between 8 and 12 years of age in rural villages in Shanyin county, Shanxi province, China. The children were exposed to As at concentrations of 142 ± 106 μg/L (medium-As group) and 190 ± 183 μg/L (high-As group) in drinking water compared with the control group that was exposed to low concentrations of As (2 ± 3 μg/L) and low concentrations of fluoride (0.5 ± 0.2 mg/L). A study group of children exposed to high concentrations of fluoride (8.3 ± 1.9 mg/L) but low concentrations of As (3 ± 3 μg/L) was also included because of the common occurrence of elevated concentrations of fluoride in groundwater in our study area. A standardized IQ (intelligence quotient) test was modified for children in rural China and was based on the classic Raven’s test used to determine the effects of these exposures on children’s intelligence. A standardized measurement procedure for weight, height, chest circumference, and lung capacity was used to determine the effects of these exposures on children’s growth. RESULTS: The mean IQ scores decreased from 105 ± 15 for the control group, to 101 ± 16 for the medium-As group (p < 0.05), and to 95 ± 17 for the high-As group (p < 0.01). The mean IQ score for the high-fluoride group was 101 ± 16 and significantly different from that of the control group (p < 0.05). Children in the control group were taller than those in the high-fluoride group (p < 0.05); weighed more than the those in the high-As group (p < 0.05); and had higher lung capacity than those in the medium-As group (p < 0.05). CONCLUSIONS: Children’s intelligence and growth can be affected by high concentrations of As or fluoride. The IQ scores of the children in the high-As group were the lowest among the four groups we investigated. It is more significant that high concentrations of As affect children’s intelligence. It indicates that arsenic exposure can affect children’s intelligence and growth

    Observation of χc1\chi_{c1} decays into vector meson pairs ϕϕ\phi\phi, ωω\omega\omega, and ωϕ\omega\phi

    Get PDF
    Decays of χc1\chi_{c1} to vector meson pairs ϕϕ\phi\phi, ωω\omega\omega and ωϕ\omega\phi are observed for the first time using (106±4)×106(106\pm4)\times 10^6 \psip events accumulated at the BESIII detector at the BEPCII e+ee^+e^- collider. The branching fractions are measured to be (4.4±0.3±0.5)×104(4.4\pm 0.3\pm 0.5)\times 10^{-4}, (6.0±0.3±0.7)×104(6.0\pm 0.3\pm 0.7)\times 10^{-4}, and (2.2±0.6±0.2)×105(2.2\pm 0.6\pm 0.2)\times 10^{-5}, for χc1ϕϕ\chi_{c1}\to \phi\phi, ωω\omega\omega, and ωϕ\omega\phi, respectively. The observation of χc1\chi_{c1} decays into a pair of vector mesons ϕϕ\phi\phi, ωω\omega\omega and ωϕ\omega\phi indicates that the hadron helicity selection rule is significantly violated in χcJ\chi_{cJ} decays. In addition, the measurement of χcJωϕ\chi_{cJ}\to \omega\phi gives the rate of doubly OZI-suppressed decay. Branching fractions for χc0\chi_{c0} and χc2\chi_{c2} decays into other vector meson pairs are also measured with improved precision.Comment: 4 pages, 2 figure

    First Observation of the Decays chi_{cJ} -> pi^0 pi^0 pi^0 pi^0

    Full text link
    We present a study of the P-wave spin -triplet charmonium chi_{cJ} decays (J=0,1,2) into pi^0 pi^0 pi^0 pi^0. The analysis is based on 106 million \psiprime decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the pi^0 pi^0 pi^0 pi^0 hadronic final state is observed for the first time. We measure the branching fractions B(chi_{c0} -> pi^0 pi^0 pi^0 pi^0)=(3.34 +- 0.06 +- 0.44)*10^{-3}, B(chi_{c1} -> pi^0 pi^0 pi^0 pi^0)=(0.57 +- 0.03 +- 0.08)*10^{-3}, and B(chi_{c2} -> pi^0 pi^0 pi^0 pi^0)=(1.21 +- 0.05 +- 0.16)*10^{-3}, where the uncertainties are statistical and systematical, respectively.Comment: 7 pages, 3 figure

    Study of χcJ\chi_{cJ} radiative decays into a vector meson

    Get PDF
    The decays χcJγV\chi_{cJ}\to\gamma V (V=ϕ,ρ0,ωV=\phi, \rho^0, \omega) are studied with a sample of radiative \psip\to\gamma\chi_{cJ} events in a sample of (1.06\pm0.04)\times 10^{8} \psip events collected with the BESIII detector. The branching fractions are determined to be: B(χc1γϕ)=(25.8±5.2±2.3)×106{\cal B}(\chi_{c1}\to \gamma\phi)=(25.8\pm 5.2\pm 2.3)\times 10^{-6}, B(χc1γρ0)=(228±13±22)×106{\cal B}(\chi_{c1}\to \gamma\rho^0)=(228\pm 13\pm 22)\times 10^{-6}, and B(χc1γω)=(69.7±7.2±6.6)×106{\cal B}(\chi_{c1}\to \gamma\omega)=(69.7\pm 7.2\pm 6.6)\times 10^{-6}. The decay χc1γϕ\chi_{c1}\to \gamma\phi is observed for the first time. Upper limits at the 90% confidence level on the branching fractions for χc0\chi_{c0} and \chict decays into these final states are determined. In addition, the fractions of the transverse polarization component of the vector meson in χc1γV\chi_{c1}\to \gamma V decays are measured to be 0.290.120.09+0.13+0.100.29_{-0.12-0.09}^{+0.13+0.10} for χc1γϕ\chi_{c1}\to \gamma\phi, 0.158±0.0340.014+0.0150.158\pm 0.034^{+0.015}_{-0.014} for χc1γρ0\chi_{c1}\to \gamma\rho^0, and 0.2470.0870.026+0.090+0.0440.247_{-0.087-0.026}^{+0.090+0.044} for χc1γω\chi_{c1}\to \gamma\omega, respectively. The first errors are statistical and the second ones are systematic.Comment: 8 pages, 3 figure

    Higher-order multipole amplitude measurement in ψ(2S)γχc2\psi(2S)\to\gamma\chi_{c2}

    Full text link
    Using 106×106106\times10^6 ψ(2S)\psi(2S) events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ(2S)γχc2γππ/γKK\psi(2S)\to\gamma\chi_{c2}\to\gamma\pi\pi/\gamma KK are measured. A fit to the χc2\chi_{c2} production and decay angular distributions yields M2=0.046±0.010±0.013M2=0.046\pm0.010\pm0.013 and E3=0.015±0.008±0.018E3=0.015\pm0.008\pm0.018, where the first errors are statistical and the second systematic. Here M2M2 denotes the normalized magnetic quadrupole amplitude and E3E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2M2 signal with 4.4σ4.4\sigma statistical significance and is consistent with the charm quark having no anomalous magnetic moment.Comment: 14 pages, 4 figure
    corecore