364 research outputs found

    Power Corrections in Charmless Nonleptonic B-Decays: Annihilation is Factorizable and Real

    Get PDF
    We classify LambdaQCD/mb power corrections to nonleptonic B-> M1 M2 decays, where M1 and M2 are charmless non-isosinglet mesons. Using recent developments in soft-collinear effective theory, we prove that the leading contributions to annihilation amplitudes of O[alphas(mb) LambdaQCD/mb] are real and are determined by nonperturbative functions that already occur in the lowest order B-> M1 M2 factorization theorem. A complex nonperturbative parameter from annihilation first appears at O[alphas^2(sqrt{Lambda mb}) LambdaQCD/mb]. ``Chirally enhanced'' contributions are also factorizable and real at lowest order. Thus, incalculable strong phases are suppressed in annihilation amplitudes, unless the alphas(sqrt{Lambda mb}) expansion breaks down. Modeling the distribution functions, we find that (11 +- 9)% and (15 +- 11)% of the absolute value of the measured B-> K- pi+ and B-> K- K0 penguin amplitudes come from annihilation. This is consistent with the expected size of power corrections

    Determining the CP Violation Angle γ\gamma in BsB_s Decays without Hadronic Uncertainty

    Full text link
    We study the rare decays Bs0→D±π∓B_s^0\to D^\pm \pi^\mp and Bˉs0→D∓π±\bar B_s^0\to D^\mp \pi^\pm, which can occur only via annihilation type WW exchange diagrams in the standard model. The time-dependent decay rates of the four channels can provide four CP parameters, which are experimentally measurable. We show that the CKM angle ϕ3=γ\phi_3=\gamma can be determined from these parameters without any theoretical model dependence. These channels can be measured in future LHCb experiments to provide a clean way for γ\gamma measurement.Comment: 4 pages, including 2 figures, Revte

    1/m_Q Corrections to the Heavy-to-Light-Vector Transitions in the HQET

    Full text link
    Within the HQET, the heavy to light vector meson transitions are systematically analyzed to the order of 1/m_Q. Besides the four universal functions at the leading order, there are twenty-two independent universal form factors at the order of 1/m_Q. Both the semileptonic decay B->\rho which is relevant to the |V_{ub}| extraction, and the penguin induced decay B -> K^* which is important to new physics discovering, depend on these form factors. Phenomenological implications are discussed.Comment: RevTeX, 9 pages, no figure

    Charmless decays B->pipi, piK and KK in broken SU(3)symmetry

    Full text link
    Charmless B decay modes B→ππ,πKB \to \pi \pi, \pi K and KKKK aresystematically investigated with and without flavor SU(3) symmetry. Independent analyses on ππ\pi \pi and πK\pi K modes both favor a large ratio between color-suppressed tree (CC) and tree (T)T) diagram, which suggests that they are more likely to originate from long distance effects. The sizes of QCD penguin diagrams extracted individually from ππ\pi\pi, πK\pi K and KKKK modes are found to follow a pattern of SU(3) breaking in agreement with the naive factorization estimates. Global fits to these modes are done under various scenarios of SU(3)relations. The results show good determinations of weak phase γ\gamma in consistency with the Standard Model (SM), but a large electro-weak penguin (P_{\tmop{EW}}) relative to T+CT + C with a large relative strong phase are favored, which requires an big enhancement of color suppressed electro-weak penguin (P_{\tmop{EW}}^C) compatible in size but destructively interfering with P_{\tmop{EW}} within the SM, or implies new physics. Possibility of sizable contributions from nonfactorizable diagrams such as WW-exchange (EE), annihilation(AA) and penguin-annihilation diagrams(PAP_A) are investigated. The implications to the branching ratios and CP violations in KKK Kmodes are discussed.Comment: 27 pages, 9 figures, reference added, to appear in Phy.Rev.

    B -> K^* gamma from D -> K^* l nu

    Full text link
    The B -> K^* gamma branching fraction is predicted using heavy quark spin symmetry at large recoil to relate the tensor and (axial-)vector form factors, using heavy quark flavor symmetry to relate the B decay form factors to the measured D -> K^* l nu form form factors, and extrapolating the semileptonic B decay form factors to large recoil assuming nearest pole dominance. This prediction agrees with data surprisingly well, and we comment on its implications for the extraction of |Vub| from B -> rho l nu.Comment: 10 page
    • …
    corecore