17,892 research outputs found

    Total phenolic, condensed tannin and antioxidant activity of four Carya species from China

    Get PDF
    Different species of functional agricultural crops may vary in antioxidant capacities. In this study, the antioxidant activities of methanol extracts from four species of Carya genus were compared by various antioxidant assays, including the reducing power, 1,1-diphenyl-2-pycrylhydrazyl (DPPH) radical scavenging activity and the superoxide anion scavenging activity. The reducing power of extracts from Carya dabieshanensis, Carya cathayensis, Carya hunanensis and Carya illinoensis were 0.246, 0.237, 0.22 and 0.073 at the concentration of 0.50 mg/ml, respectively. The scavenging effect on the DPPH radical (IC50) were 1.140, 1.364, 1.437 and 3.682 mg/ml, respectively, while the scavenging effect on superoxide anion radical were 27.44, 22.80, 26.15, 1.99 mg AE/g, respectively. Among the four species, C. dabieshanensis possessed the highest antioxidant activity, while C. illinoensis was the lowest. The total phenolic (TP) contents and condensed tannins (CT) were determined in all samples spectrophotometrically. For all species, C. dabieshanensis possessed the highest TP content (80.54 mg GE/g defatted kernel) and C. hunanensis possessed the highest CT content (59.62 mg CE/g defatted kernel). In addition, strong correlations of total phenolic contents and condensed tannins contents with reducing powers, DPPH radical and superoxide anion scavenging activities were also found in this work.Key words: Carya, antioxidant, phenolic compounds, condensed tannins

    Lattice dynamics and electron-phonon coupling in Sr2RuO4

    Full text link
    The lattice dynamics in Sr2_2RuO4_4 has been studied by inelastic neutron scattering combined with shell-model calculations. The in-plane bond-stretching modes in Sr2_2RuO4_4 exhibit a normal dispersion in contrast to all electronically doped perovskites studied so far. Evidence for strong electron phonon coupling is found for c-polarized phonons suggesting a close connection with the anomalous c-axis charge transport in Sr2_2RuO4_4.Comment: 11 pages, 8 figures 2 table

    Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal

    Get PDF
    We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon contribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity

    Luminous Infrared Galaxies in the Local Universe

    Full text link
    We study the morphology and star formation properties of 159 local luminous infrared galaxy (LIRG) using multi-color images from Data Release 2 (DR2) of the Sloan Digital Sky Survey (SDSS). The LIRGs are selected from a cross-correlation analysis between the IRAS survey and SDSS. They are all brighter than 15.9 mag in the r-band and below redshift ~ 0.1, and so can be reliably classified morphologically. We find that the fractions of interacting/merging and spiral galaxies are ~ 48% and ~ 40% respectively. Our results complement and confirm the decline (increase) in the fraction of spiral (interacting/merging) galaxies from z ~1 to z ~ 0.1, as found by Melbourne, Koo & Le Floc'h (2005). About 75% of spiral galaxies in the local LIRGs are barred, indicating that bars may play an important role in triggering star formation rates > 20 M_{sun}/yr in the local universe. Compared with high redshift LIRGs, local LIRGs have lower specific star formation rates, smaller cold gas fractions and a narrower range of stellar masses. Local LIRGs appear to be either merging galaxies forming intermediate mass ellipticals or spiral galaxies undergoing high star formation activities regulated by bars.Comment: 22 pages, 5 figures, accepted for publication in ApJ, title changed, typos corrected,major revisions following referee's comments,updated reference

    Emergence of intrinsic superconductivity below 1.178 K in the topologically non-trivial semimetal state of CaSn3

    Get PDF
    Topological materials which are also superconducting are of great current interest, since they may exhibit a non-trivial topologically-mediated superconducting phase. Although there have been many reports of pressure-tuned or chemical-doping-induced superconductivity in a variety of topological materials, there have been few examples of intrinsic, ambient pressure superconductivity in a topological system having a stoichiometric composition. Here, we report that the pure intermetallic CaSn3 not only exhibits topological fermion properties but also has a superconducting phase at 1.178 K under ambient pressure. The topological fermion properties, including the nearly zero quasi-particle mass and the non-trivial Berry phase accumulated in cyclotron motions, were revealed from the de Haas-van Alphen (dHvA) quantum oscillation studies of this material. Although CaSn3 was previously reported to be superconducting at 4.2K, our studies show that the superconductivity at 4.2K is extrinsic and caused by Sn on the degraded surface, whereas its intrinsic bulk superconducting transition occurs at 1.178 K. These findings make CaSn3 a promising candidate for exploring new exotic states arising from the interplay between non-trivial band topology and superconductivity, e.g. topological superconductivityComment: 20 pages,4 figure

    Orbital-dependent metamagnetic response in Sr4Ru3O10

    Full text link
    We show that the metamagnetic transition in Sr4_4Ru3_3O10_{10} bifurcates into two transitions as the field is rotated away from the conducting planes. This two-step process comprises partial or total alignment of moments in ferromagnetic bands followed by an itinerant metamagnetic transition whose critical field increases with rotation. Evidence for itinerant metamagnetism is provided by the Shubnikov-de Hass effect which shows a non-trivial evolution of the geometry of the Fermi surface and an enhancement of the quasiparticles effective-mass across the transition. The metamagnetic response of Sr4_4Ru3_3O10_{10} is orbital-dependent and involves ferromagnetic and metamagnetic bands.Comment: Physical Review B (in press
    corecore