72 research outputs found

    Middle Bronze Age humidity and temperature variations, and societal changes in East-Central Europe

    Get PDF
    Archaeological evidence points to substantial changes in Bronze Age societies in the European-Mediterranean region. Isotope geochemical proxies have been compiled to provide independent ancillary data to improve the paleoenvironmental history for the period of interest and support the interpretation of the archaeological observations. In addition to published compositions, in this study we gathered new H isotope data from fluid inclusion hosted water from a stalagmite of the Trió Cave, Southern Hungary, and compared the H isotope data with existing stable isotope and trace element compositions reported for the stalagmite. Additionally, animal bones and freshwater bivalve shells (Unio sp.) were collected from Bronze Age archaeological excavations around Lake Balaton and their stable C and O isotope compositions were measured in order to investigate climate changes and lake evolution processes during this period. The data indicate warm and humid conditions with elevated summer precipitation around 3.7 cal ka BP (Before Present, where present is 1950 CE), followed by a short-term deterioration in environmental conditions at about 3.5 cal ka BP. The environment became humid and cold with winter precipitation dominance around 3.5 to 3.4 cal ka BP, then gradually changed to drier conditions at ∼3.2 cal ka BP. Significant cultural changes have been inferred for this period on the basis of observations during archaeological excavations. The most straightforward consequences of environmental variations have been found in changes of settlement structure. The paleoclimatological picture is well in line with other East-Central European climate records, indicating that the climate fluctuations took place on a regional scale

    Ammonite stratigraphy of a Toarcian (Lower Jurassic) section on Nagy-Pisznice Hill (Gerecse Mts, Hungary)

    Get PDF
    Abstract In the Jurassic rocks exposed in a small abandoned quarry on the northwestern edge of Nagy-Pisznice Hill in the Gerecse Mts, fairly well preserved parts of a crocodile skeleton was found in 1996. The bed which yielded the skeletal remains is the uppermost layer of the Kisgerecse Marl Formation exposed here and was determined as belonging to the Upper Toarcian Grammoceras thouarsense Zone. The beds of the sequence above and below were carefully sampled in the late 1990s, and the encountered ammonites were evaluated biostratigraphically. As a result, the Lower Toarcian Harpoceras serpentinum Zone, the Middle Toarcian Hildoceras bifrons and Merlaites gradatus Zones, and the Upper Toarcian Grammoceras thouarsense and Geczyceras speciosum Zones were identified. Within most of these zones the subzones and even the faunal horizons were successfully recognized. The lowermost beds above the underlying Pliensbachian red limestone did not yield any fossils; thus the lowermost Toarcian Dactylioceras tenuicostatum Zone could not be documented. The highest Toarcian ammonite zones also remained unidentified, because the beds of the Tölgyhát Limestone above were not sampled all the way up. This paper presents the lithostratigraphic and biostratigraphic details of the sequence, and the paleontological descriptions of the most important ammonites

    The Beaker phenomenon and the genomic transformation of northwest Europe

    Get PDF
    From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain’s gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries

    The Origins and Spread of Domestic Horses from the Western Eurasian Steppes

    Get PDF
    Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2–4 at Botai, Central Asia around 3500 bc3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture11,12. © 2021, The Author(s).We thank all members of the AGES group at CAGT. We are grateful for the Museum of the Institute of Plant and Animal Ecology (UB RAS, Ekaterinburg) for providing specimens. The work by G. Boeskorov is done on state assignment of DPMGI SB RAS. This project was supported by the University Paul Sabatier IDEX Chaire d’Excellence (OURASI); Villum Funden miGENEPI research programme; the CNRS ‘Programme de Recherche Conjoint’ (PRC); the CNRS International Research Project (IRP AMADEUS); the France Génomique Appel à Grand Projet (ANR-10-INBS-09-08, BUCEPHALE project); IB10131 and IB18060, both funded by Junta de Extremadura (Spain) and European Regional Development Fund; Czech Academy of Sciences (RVO:67985912); the Zoological Institute ZIN RAS (АААА-А19-119032590102-7); and King Saud University Researchers Supporting Project (NSRSP–2020/2). The research was carried out with the financial support of the Russian Foundation for Basic Research (19-59-15001 and 20-04-00213), the Russian Science Foundation (16-18-10265, 20-78-10151, and 21-18-00457), the Government of the Russian Federation (FENU-2020-0021), the Estonian Research Council (PRG29), the Estonian Ministry of Education and Research (PRG1209), the Hungarian Scientific Research Fund (Project NF 104792), the Hungarian Academy of Sciences (Momentum Mobility Research Project of the Institute of Archaeology, Research Centre for the Humanities); and the Polish National Science Centre (2013/11/B/HS3/03822). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (grant agreement 797449). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements 681605, 716732 and 834616)
    corecore