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Abstract 

Archaeological evidence points to substantial changes in Bronze Age societies in the 

European-Mediterranean region. Isotope geochemical proxies have been compiled to 

provide independent ancillary data to improve the paleoenvironmental history for the 

period of interest and support the interpretation of the archaeological observations. In 

addition to published compositions, in this study we gathered new H isotope data from fluid 

inclusion hosted water from a stalagmite of the Trió Cave, Southern Hungary, and compared 

http://www.sciencedirect.com/science/article/pii/S1040618217309448 
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the H isotope data with existing stable isotope and trace element compositions reported for 

the stalagmite. Additionally, animal bones and freshwater bivalve shells (Unio sp.) were 

collected from Bronze Age archaeological excavations around Lake Balaton and their stable C 

and O isotope compositions were measured in order to investigate climate changes and lake 

evolution processes during this period. The data indicate warm and humid conditions with 

elevated summer precipitation around 3.7 cal ka BP (Before Present, where present is AD 

1950), followed by a short-term deterioration in environmental conditions at about 3.5 cal 

ka BP. The environment became humid and cold with winter precipitation dominance 

around 3.5 to 3.4 cal ka BP, then gradually changed to drier conditions at ~3.2 cal ka BP. 

Significant cultural changes have been inferred for this period on the basis of observations 

during archaeological excavations. The most straightforward consequences of 

environmental variations have been found in changes of settlement structure. The 

paleoclimatological picture is well in line with other East-Central European climate records, 

indicating that the climate fluctuations took place on a regional scale.  

 

Keywords: Middle Bronze Age; humidity; speleothem; stable isotope compositions; 

archaeology 

 

1. Introduction 

 

Although the Holocene is a stable climatic period compared to the entire Quaternary, 

fluctuations have been detected (e.g., Mayewski et al., 2004, Wanner et al., 2011), 

sometimes inducing major societal changes (e.g., Lamb 1982, Finné et al., 2011, Mensing et 

al., 2015). In addition to temperature variations, precipitation level and seasonality also play 
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important roles (e.g., Guiot and Kaniewski, 2015; Peyron et al., 2017), requiring complex 

interpretation of combined data from independent proxies. In the case of Hungary (East 

Central Europe), documentary sources provide invaluable contributions to the climate-

society interactions over the historical period (Vadas, 2013; Vadas and Rácz, 2013; Kiss and 

Laszlovszky, 2013; Kiss and Nikolić, 2015). Moreover, changes in Medieval settlement 

pattern, known from the archaeological evidence in the Great Hungarian Plain, have recently 

been plausibly linked to long-term hydroclimatological changes using historical and 

archaeobotanical information (Pinke et al., 2016, 2017). However, the availability of written 

sources is obviously limited in time (Kiss, 2009). A plethora of archaeological evidence is at 

hand, suggesting major societal and cultural changes dated to the pre-historical period. The 

role of independent information deduced from (paleo)environmental proxy records acquire 

a higher value in determining links between societal changes and climate, because they 

provide the only means to confirm or refute climate related theories that are established on 

the basis of fragmentary archaeological information. 

One of the most important continental paleoclimate archives are speleothems (cave-

hosted carbonate deposits) which can record annual or even seasonal changes in climatic 

conditions prevailing at the surface above the cave, and preserve this information in the 

geological record for tens or even hundreds of thousand years (Fairchild and Baker, 2012). 

Therefore, the speleothem archives have the potential to provide independent information 

about the environmental conditions of ancient societies. It is apparent that although 

speleothems are valuable climate recorders, stalagmite formation is a complex system with 

counteracting factors (Fairchild et al., 2006; Lachniet, 2009) and combined evaluation of 

different climate proxies is needed to improve the reliability of interpretation. A detailed 

introduction to speleothem-derived proxy data is beyond the scope of the present study 
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(see the comprehensive review of Fairchild and Baker, 2012); however, hydrogen isotope 

analyses of inclusion-hosted water will be introduced briefly because this is a central issue in 

the current study. Although studies on the stable isotope compositions of water that is 

trapped in speleothems commenced in the 1970’s (Schwarcz et al., 1976; Harmon et al., 

1978), relatively few studies have utilized this technique compared to the huge number of 

investigations using carbon and oxygen isotope data of carbonates. Water-oxygen isotope 

composition can be recorded by the δ18O of speleothem calcite, however, this is also 

influenced by temperature-dependent fractionation, and usually both formation 

temperature and water composition are unknown parameters. Hydrogen isotope 

compositions have the advantage that the D/H ratios of the original drip waters are 

preserved in the fluid inclusions without any fractionation related to precipitation 

temperature, thus these data record water compositions directly. If the local Meteoric 

Water Line (a relationship between hydrogen and oxygen isotope compositions of meteoric 

waters at a given location, e.g. Clark and Fritz, 1997; Fórizs, 2005) is known, the oxygen 

isotope composition of the drip-water can be calculated from the H isotope data and that, 

together with calcite composition and the known fractionation relationship, provides the 

formation temperature (see, for example, Zhang et al., 2008). However, the meteoric water 

line valid for the drip water may change with time, hence, additional paleoclimatic data are 

required for firm interpretation of the H and O isotope data. 

 The present paper deals with the Bronze Age period from 3.9 to 3.2 cal ka BP (Before 

Present where present is AD 1950) in which significant cultural changes took place in the 

European-Mediterranean region that could be related to variations in environmental 

conditions (e.g., Menotti, 2009; Drake, 2012; Meller et al., 2013; Armit et al., 2014; 

Primavera et al., 2017). Good correlations between C and O isotope compositions of 
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speleothems from Hungary, Austria and Turkey have been detected (Siklósy et al., 2009), 

indicating regional abrupt climate changes within this relatively short period. In this study we 

improved the H isotope record presented by Siklósy et al. (2009) using a stalagmite from the 

Trió Cave (southern Hungary), producing an age resolution of 30-100 years, to infer 

temperature and humidity changes. The data are compared with published P and Mg 

concentration data from the same speleothem (Siklósy et al., 2009) to help the 

interpretation of the stable isotope data. Another important paleoclimate archive for the 

region is provided by freshwater bivalves living in Lake Balaton (Schöll-Barna et al., 2012). 

Shells of freshwater bivalves may provide an appropriate material for paleoenvironmental 

studies as they reflect the environmental conditions (temperature and humidity) of the 

warm seasons (e.g., Dettman et al. 1999; Verdegaal et al. 2005; Carroll and Romanek, 2008; 

Versteegh et al. 2009; Schöne and Fiebig, 2009; Schöll-Barna, 2011). Bivalve shells of Unio sp. 

were collected at archaeological excavation sites at Lake Balaton. The sites were dated by 

classical pottery typo-chronology, as well as AMS 14C dating of animal bones collected from 

the same sites. In addition to shell analyses, C and O isotope analyses were also conducted 

on bone carbonate. Due to constant body temperature, the oxygen isotope composition of 

the carbonate fraction of the biogenic apatite of animal bones may directly reflect water 

composition (Longinelli, 1984; Luz and Kolodny, 1985) that in turn is related to ambient 

temperature (Dansgaard, 1964; Rozanski et al., 1993). On the other hand, C isotope 

composition of bone carbonate depends on the vegetation type that the animal was fed on. 

A warmer and drier climate would favour C4 plants with a higher 13C content, whereas in a 

more humid environment, C3 plants with elevated 12C content would dominate. As a 

consequence, a change in diet would be reflected in the C isotope composition of the 

animal’s body tissues.  
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All these climate proxy data were evaluated together that lead to a synthesis of 

temperature, and humidity and precipitation, as well as seasonality changes in the period of 

3.9 to 3.2 cal ka BP. We also explore the effect of these environmental variations on local 

ancient society. 

 

2. Socio-cultural, economic and ritual transformations in the Pannonian Basin in the 

Bronze Age  

 

 Due to this being an archaeological summary, within this section, the ages are given 

both as calendar years BP (relative to AD 1950) and in the AD/BC timescale. A summary of 

Bronze Age archaeological periods and cultures in Hungary is provided in Supplementary 

Table 1. During the Transitional Period between the Late Copper Age and the beginning of 

the Early Bronze Age (EBA) in the territory of present-day Hungary (2800/2700–2600/2500 

BC; ~4750 to 4450 cal years BP), ceramic styles delineate communication networks covering 

large areas within the whole Pannonian Basin, with two main groups characterized by the 

Makó-Kosihy-Čaka and Late Vučedol/Somogyvár-Vinkovci ceramic styles (Bóna, 1992; 

Bondár, 1996; Kulcsár, 2009; Reményi, 2009; Kulcsár and Szeverényi, 2013). With a few 

exceptions, the settlement pattern of this phase indicates little social stratification, with little 

differentiation between the larger centres and the smaller or larger open settlements. In the 

second half of the EBA (2500/2400–2000/1900 BC; ~ 4450 to 3850 cal years BP), one can 

observe a transformation that probably grew out of the contact of a southern/Balkan and a 

northwestern/central European (Bell Beaker) network within the Pannonian Basin. In place 

of the previous two large stylistic units, new ones covering smaller areas appeared along the 

Danube and to the east, and developed continuously into the Middle Bronze Age (MBA) 
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from 2000/1900 BC (~3950 cal years BP) (Bóna, 1992; Neugebauer, 1994; Krenn-Leeb, 2006; 

Fischl et al., 2013). One of the major features of the MBA is the formation of the so-called 

‘tell’ or stratified settlements that were inhabited for many centuries in the Great Hungarian 

Plain (Vatya, Hatvan and Füzesabony cultures) (Gogâltan, 2002; O’Shea, 2011; Fischl et al., 

2013). However, tell settlements were not found west of this region, while the tells and the 

fortified hilltop settlements in the central part of Transdanubia seemingly imply the 

emergence of a new agricultural, economic, political/territorial, social and even ritual 

system. In the western part of the Pannonian Basin, we encounter the Transdanubian 

Encrusted Pottery in the MBA (Kiss, 2012). Further to the west, communities belonged to the 

wider Aunjetitz circle (Gáta/Wieselburg, Unterwölbling) and the southeast Alpine regional 

groups. All this indicates the emergence of smaller groups that communicated their 

identities with new, increasingly distinct ceramic styles. 

As testified by archaeological findings, the first half of the second millennium BC 

witnessed major changes in the Pannonian Basin. The classical phase of the MBA ended with 

a relatively short period of significant transformations, called the Koszider Period (1600-

1500/1450 BC; ~3550 to 3450 cal years BP). This latter period corresponds to the last phase 

of the MBA and represents a transition to the Late Bronze Age (LBA). The transition itself 

was interpreted by the migration of the mobile pastoralist warriors of the so-called Tumulus 

culture from the territory of the present-day Southern Germany to the eastern part of 

Central Europe. Another possible reason for this is the increased intensity of contacts 

between MBA communities, which may be connected to the widening of regional and 

interregional exchange networks, through which raw materials and exotic items were 

acquired, and caused the transformation of identities (Bóna, 1992; Fischl et al., 2013).  
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 Based on the available data, the number and size of settlements increased during 

the MBA, which probably also indicates demographic growth (Chapman, 1999; Szeverényi, 

2004; Kiss, 2012; Fischl et al., 2013). The final phase of the era, the Koszider Period, 

witnessed a rearrangement of the settled area. However, it is hard to determine whether we 

can actually observe a settlement nucleation, which would indicate the movement of people 

into larger ‘centres’ (Earle and Kolb, 2010; Fischl et al., 2013). 

At the beginning of the LBA, the number of settlements in all the above-mentioned 

regions was lower than in the previous phase. We can detect an overall fall in the number of 

sites in the Tumulus period, while there are areas that were inhabited for the first time in 

this phase (V. Szabó, 1999; Sánta, 2010, 2012). The open settlements, with early Tumulus 

type material that appeared at the end of the MBA, seem to complement the already 

existing settlement pattern, first in western Transdanubia and in the southern part of the 

Great Hungarian Plain (Sánta, 2010). Obvious MBA centres like tells and fortified hilltop 

settlements disappeared and gave way to a network of open settlements throughout 

Hungary. Settlement patterns without signs of long-term occupation seem to reflect a 

different social, economic and probably political organization, and a different perspective on 

the landscape in comparison to the previous centuries (Csányi, 2003; Sánta, 2010; Fischl et 

al., 2013). Not only settlement structure changed after the Koszider Period. Ceramic styles, 

metal production, deposition and even burial rites transformed in a way that the overall 

picture reflects a more heterogeneous society. However, new evidence indicates that the 

difference between MBA and LBA communities and their subsistence patterns may not be as 

clear cut as previously suggested. Archaeobotanical and archaeozoological studies do not 

demonstrate major changes in lifestyle, however, a gradual transition to large livestock 

herding can be observed (Choyke and Bartosiewicz, 2000; Gyulai, 2010; Vretemark, 2010). 
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Physical anthropological analysis of skeletal material from some of the cemeteries indicates 

the continuity of the population, together with an internal restructuring that resulted in a 

regional anthropological heterogeneity of communities of the Tumulus period (Hajdu, 2012).  

The treatment of the corpse also changed over time. In Transdanubia and in the 

western part of the Great Hungarian Plain, the more or less uniform burial rite of the EBA 

and MBA communities was cremation. In the eastern and southern parts of the Great 

Hungarian Plain (among the communities of Füzesabony and Maros styles), inhumation 

dominated. The MBA graves of females were richly furnished with jewellery while male 

graves were furnished with weapons, indicating a more stratified society compared to the 

former period. In the Koszider Period, a larger variety of burial rites occurred and bi-ritual 

cemeteries became more frequent; however, the practice of providing grave goods 

continued in the same manner. In the Tumulus period, a new element of circular ditches, 

with or without a burial mound (tumulus), appeared. The warrior graves of the early and 

classic Tumulus period, under these mounds, may also indicate stratified societies, however, 

some cemeteries with uniform burials suggest a more egalitarian society in some territories 

of the Pannonian Basin (Harding, 2000; Bösel, 2008; Fischl et al., 2013). 

 By the end of the 15th century BC (~3400 cal years BP), the main European 

communication network was also reorganized. Instead of the northwest-southeast axis, a 

north-south oriented channel, which finally bypassed the Pannonian Basin, became 

dominant. A few centuries later, in the classic and late phases of the LBA, the Danube 

became a distinct dividing line between western and eastern cultural regions. 
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Fig. 1. Locations of the archaeological site of Ordacsehi-Bugaszeg (bivalve shells) and the Trió 
Cave (stalagmite). Potential lake water levels are shown in C as heights above sea level. 
 
3. Locations and samples 

 

 Mollusc shells are frequently found during archaeological excavations along the 

shoreline of Lake Balaton, presumably as kitchen waste in household rubbish pits. Shells 

were collected at the site of Ordacsehi-Bugaszeg (Fig. 1) between 2000 and 2002, within the 

framework of preventive excavations along the M7 highway (Kiss et al, 2007). The site is 

about 5 km from the present-day shore of the lake, which is the largest shallow lake in 

Central Europe, with an average depth of 3 m. Due to its shallow depth, it is particularly 

sensitive to climatic variations. The main processes responsible for lake level variations 

(apart from recent human activity) are changes in evaporation rate and influx of 

precipitation, either directly or through rivers and creeks.  
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 Based on archaeological observations, the Ordacsehi-Bugaszeg sites belong to the 

Bronze Age (about 2.5 to 4.0 cal ka BP), and represent various cultures: Somogyvár-Vinkovci 

(~4.5-4.2 cal ka BP), Kisapostag (~4.2-3.9 cal ka BP), Late Kisapostag-Early Transdanubian 

Encrusted Pottery culture (~3.9-3.8 cal ka BP), Transdanubian Encrusted Pottery culture 

(~3.8-3.6 cal ka BP) and Tumulus culture (~3.6-3.5 cal ka BP) (ages were converted from 

CE/BCE ages of Visy, 2003 and Fischl et al., 2013).  

 The Trió Cave (46.7°N, 18.9°E) is located in the western part of the Mecsek Hills, S-

Hungary (Fig. 1), at the bottom of the Szuado Valley. The cave is one of the karst systems 

developed in Anisian Lapis Limestone in the area and comprises ca. 200 m of passages with a 

catchment area of 3.5 km2. There is only one artificial entrance, opened in 1969. Corridors 

blocked by clay and debris were explored and opened from the mid 1990’s. The cave is 

situated in a natural oak and hornbeam forest (Querco petreae-Carpinetum), free from 

agricultural activities (e.g. ploughing and fertilizing). The host rocks consist of thick (>1000 

m) Upper Permian fluvial sandstones, and Triassic shallow marine clastics and carbonates 

(limestones and dolomites with evaporitic inter-beddings (Nagy, 1968). The general wind 

direction is westerly to north-westerly and the average annual precipitation in the region is 

660 mm. The mean annual temperature within the deep interior of the cave is ca. 10 °C, 

whereas lower temperatures to ~7°C were found at shallower levels (Muladi et al., 2013). A 

beehive shaped stalagmite, formed about 30 m from the entrance (where the temperature 

is about 8 °C, Muladi et al., 2013) , was drilled from the side yielding a core 42 cm in length.  
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Fig. 2. An age-depth model established from the original U/Th data of Siklósy et al. (2009) 
using the StalAge algorithm (Scholz and Hoffmann, 2011). The grey arrow marks the 
direction to the origin. 
 
4. Analytical techniques 

 

 Optical microscopic analyses were carried out in crossed-polarised transmission light 

using a Nikon Eclipse E600 POL optical microscope on polished thin (~100 µm) sections. 

Results of dating, trace element and stable isotope geochemical analyses, evaluated in this 

paper, were reported in detail by Siklósy et al. (2009). 

 

4.1. Radiometric age determination 

A re-calibrated age-depth model was established from the original U/Th data of 

Siklósy et al. (2009) using the StalAge algorithm (Scholz and Hoffmann, 2011). In order to 
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make them comparable with the radiocarbon ages, all U-Th ages are reported as calendar 

years Before Present (BP) relative to AD 1950. The age-depth model is shown in Fig. 2. 

AMS 14C analyses were conducted on bone collagen at the Scottish Universities 

Environmental Research Centre (SUERC) and at the Vienna Environmental Research 

Accelerator (VERA) facilities. At SUERC, whole fragments of bone (several mm diameter) 

were first cleaned by abrading the surface with a Dremel tool fitted with a small buff. The 

fragments were then placed in cold molar HCl for approximately 2-3 days to effect 

demineralisation. The acid solution was then decanted and the collagen washed in reverse 

osmosis water and then placed in further reverse osmosis water. Where necessary, a small 

amount of 0.5 M HCl was added to adjust the pH of the solution to 3. The solution was then 

heated gently (to approx. 80°C) for 3-4 hours to dissolve/gelatinise the collagen, cooled, 

filtered through Whatman GF/A glass fibre paper and freeze dried. 15-20 mg sub-samples 

were combusted in sealed quartz tubes containing copper oxide and silver foil, according to 

the method of Vandeputte et al. (1996). All CO2 samples were extracted under vacuum, 

cryogenically purified and prepared as graphite targets according to the method of Slota et 

al. (1987). The 14C/13C ratios of the graphitised samples were measured on the SUERC single-

stage accelerator mass spectrometer (Freeman et al. 2010), manufactured by National 

Electrostatics Corporation, Wisconsin and radiocarbon ages calculated using the background 

subtraction method. Sub-samples of the collagen (approx. 0.7 mg) were analysed for stable 

carbon isotope ratio using a Thermo-Fisher Delta V Advantage continuous flow isotope ratio 

mass spectrometer, interfaced to a Costech Instruments elemental analyser system.  

The chemical pre-treatment procedure applied at the VERA facility was essentially 

the same as above; the 14C/13C ratios were determined using a tandem AMS system, again 

built by National Electrostatics Corporation in Wisconsin, USA.  
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The calibrated ages were calculated using the OxCal4.1 (Bronk Ramsey, 2001) and the 

INTCAL13-dataset (Reimer et al., 2013). 

 

4.2. Stable isotope geochemistry 

 Stable H isotope values of fluid inclusion water, and C and O isotope compositions 

and trace element contents of the calcite from the Trió Cave stalagmite have been reported 

by Siklósy et al. (2009), thus, the reader is referred to this paper for the analytical 

procedures.  For additional H isotope data, D/H ratios of inclusion-hosted H2O were 

determined by vacuum-crushing. Chips of 3-5 mm were placed in stainless steel tubes 

welded at one end, pumped to vacuum and crushed using a hydraulic press. The released 

H2O was purified by vacuum distillation and reacted with Zn at 480 °C to produce H2 gas (see 

Demény, 1995, and Demény and Siklósy, 2008). The D/H ratios were determined using a 

Finnigan MAT delta S mass spectrometer at the Institute for Geological and Geochemical 

Research, Budapest. 

 The mineralogy of the shells was checked by cathodoluminescence microscopy 

(Barbin, 2013) and only those shells preserving the original aragonitic material were used for 

isotope geochemical analysis (for further details see Schöll-Barna et al., 2012). Aragonite 

samples from the bivalve shells were collected by drilling equidistantly (with a spatial 

resolution of about 0.6 mm) on the outer surfaces (pre-cleaned by physically removing the 

soil-related coating). Bone samples were pre-treated following the procedure suggested by 

Koch et al. (1997) and Amiot et al. (2010). Samples were powdered and soaked in 2% NaOCl 

solution for one day to remove organic matter, then treated with 0.1 M acetic acid for one 

day to remove soil-related carbonate. The samples were rinsed in distilled water 5-10 times 

after each step. After drying at 50°C, 1, 2 and 3 mg samples were analysed using the same 
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procedure as for the shell aragonite samples. Stable carbon and oxygen isotope 

compositions of approximately 150-200 µg carbonate (shell and bone) samples were 

determined from the carbonate - orthophosphoric acid reaction at 72 °C (Spötl and 

Vennemann, 2003) and using an automated GASBENCH II sample preparation device 

attached to a Thermo Finnigan Delta Plus XP mass spectrometer at the Institute for 

Geological and Geochemical Research, Budapest.  

 The isotope compositions are expressed in ‰ as δD, δ13C and δ18O values relative to 

V-SMOW (δD values) and V-PDB (δ13C and δ18O values), according to the equation: δ = 

(Rsample/Rstandard–1) x 1000, where R is the D/H, 13C/12C or 18O/16O ratio. The measurement 

precision is better than 0.15‰ for C and O isotope data of carbonates, based on replicate 

measurements of international standards (NBS-19; NBS-18) and in-house reference 

materials, and about 3‰ for δD values, based on duplicate analyses. The reproducibility of 

δ13C and δ18O values from measurements on bone carbonates is better than 0.18 and 

0.40‰, respectively. 

 

5. Results 

 

5.1. Shells and bones from archaeological excavations  

 Bones from all five archaeological sites of Ordacsehi-Bugaszeg were dated by AMS 

14C, yielding median ages of 3925 to 3539 cal years BP (Table 1, Fig. 3A). Stable carbon and 

oxygen isotope data of the bivalve shells range from –6.4 to +0.8‰ and –8.6 to –1.7‰, 

respectively (Table 2). The entire dataset (268 analyses from 10 shells, Supplementary Table 

2) yields a positive correlation (R2=0.62; Fig. 3B), whereas the mean δ13C and δ18O values 

calculated for individual archaeological periods are even better correlated. The δ13C and 
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δ18O data show both within-shell fluctuations (related to seasonal fluctuations reported by 

Schöll-Barna et al., 2012) and multiannual differences. Plotting the median values of C and O 

isotope compositions as a function of age (Fig. 3C), the data show a strong fluctuation, with 

the highest δ13C and δ18O values at 3800 cal years BP and very low values at 3670 cal years 

BP. Stable carbon and oxygen isotope compositions of bone-hosted carbonate range from –

13.6 to –10.0‰ and –6.8 to –3.2‰, respectively (Table 2). The δ13Cbone and δ18Obone patterns 

are different from each other (Fig. 3D) and from the shell carbonates’ isotopic compositions. 

 

 

Fig. 3. AMS 14C ages (A) and stable C and O isotope compositions (in ‰ relative to V-PDB) of 
carbonate contents of Unio sp. shells (B and C) and animal bones (D) collected from 
archaeological excavation sites of Ordacsehi-Bugaszeg (at Lake Balaton, Western Hungary). 
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Fig. 4. Carbonate fabrics occurring in the Trió core. (a) Porous columnar fabric with two 
orders of lamination (sub-laminae connected to thin detrital layers are aligned by blue 
arrows, while the macroscopically visible compact laminae are aligned by white arrows). (b) 
Compact columnar fabric with low porosity. (c) Microcrystalline fabric with interfingering 
extinction boundaries and high porosity. (d) Erosion surface in the lowermost section of the 
compact columnar fabric aligned by white arrow, covered by a series of brown laminae of 
detrital origin. 
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5.2. Petrography of the studied stalagmite section 

 Four main textural types have been observed in the studied section of the Trió 

stalagmite (from 200 mm to 360 mm from the top of the core, dft). Microscopic pictures are 

shown in Fig. 4, while a petrographic log is presented along with stable isotope compositions 

in Fig. 6 that shows distance intervals cited in the description.  

 Porous columnar fabric. This is the dominant fabric type in the studied stalagmite 

section. It is characterized by columnar extinction domains with considerably higher porosity 

(Fig. 4a). This part of the stalagmite consists of macroscopically white, porous laminae and 

thinner, translucent, dense laminae. These lamina couplets are relatively thick (1.5-2 mm). 

Porous laminae are characterized by small, rounded pores, which are organized into 0.1-0.4 

mm thick sub-laminae (Fig. 4a, blue arrows) along with thin brown layers of detrital 

inclusions. Lamination in this fabric is even and parallel. The extinction domains are 

elongated, have straight boundaries and cut across several laminae, parallel to the direction 

of growth, similarly described by Boch et al. (2011). 

 Compact columnar fabric. Macroscopically dark, translucent sections of the core 

consist of columnar calcite crystals with little or no inter-crystalline porosity (Fig. 4b). Brown 

laminae of detrital inclusions are common, especially between 250-260 mm dft.  

  Microcrystalline fabric. This fabric is similar to the open columnar fabric in terms of 

its lamination of alternating thin compact and thicker porous laminae. However, the 

extinction domains have serrated interlocking boundaries, crosscutting wide bands of brown 

micritic/microsparitic laminae. The latter is more typical in the sections between 204-216 

and 270-275 mm from the top of the core. Lamination is significantly thinner in these 

sections (0.1-0.2 mm), while it’s the thickest in the section under 310 mm dft (usually thicker 

than 1 mm), where no brown laminae occur.  
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 Bands of micrite/microsparite with high detrital content are observed at narrow 

intervals that might represent erosional surfaces or highly reduced growth periods. Every 

lamina is covered by thick brown material (sometimes a series of thin brown laminae can be 

recognized) along uneven, rounded surfaces (Fig. 4d). One of these surfaces (Fig. 4d, aligned 

by a white arrow) even cuts into the underlying lamination, which clearly indicates erosion. 

Lamina couplets have variable thickness. 

  

Fig. 5. Stable isotope compositions of shells and bones collected from archaeological 
excavations, H, C and O isotope compositions inclusion-hosted water and the host calcite 
along with P and Mg concentrations of the Trió stalagmite (Siklósy et al., 2009). Proxy 
records are arranged to reflect humidity (shell δ13C and δ18O, Trió stalagmite P content and 
and δ13C) and temperature (Trió stalagmite δD, calculated temperatures, bone δ18O, Trió 
stalagmite Mg contents and δ18O). Calculated temperatures obtained by procedures 1 and 2 
(see text) are shown by solid and dashed lines, respectively.  
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5.3. Geochemical compositions of the Trió stalagmite 

 The stable C and O isotope and trace element (Mg, P) data, as well as most of the H 

isotope compositions of the Trió Cave stalagmite, selected for this study, have been 

published earlier (see supporting material of Siklósy et al., 2009). As the H isotope dataset is 

supplemented with new analyses, the δD values are listed in Table 2 and shown in Fig. 5, 

together with the C and O isotope compositions of the host calcite.  

P concentrations fluctuate between 50 and 340 ppm, showing an inverse relationship 

with the δ13C values (Fig. 5). In order to avoid misalignment of the analytical tracks that were 

on different pieces of the drill core, the trace element record was tuned to the C isotope 

record shifted by 30 years, resulting in good match of the positive δ13C and negative P peaks 

at 3580 cal years BP. The lowest P concentrations were found around 3.8 and 3.2 cal ka BP, 

while the period of 3.70 to 3.48 cal ka BP is generally characterized by elevated P content. A 

short-lived decrease in the P content occurred around 3.6 cal ka BP when a positive δ13C 

peak could also be observed (Fig. 5). The Mg concentrations fluctuate between 150 and 550 

ppm, showing a positive relationship with the δ18Ocalcite values (Fig. 5). In order to quantify 

the correlation, both records were transformed to temporarily equidistant, with 10-years 

steps using the PAST program (Hammer et al., 2001). The transformed δ18O and Mg records 

are positively correlated with an R value of 0.39 (p<0.01), while using 50 year moving 

average of the transformed records (see Fig. 5) the R value rises to 0.74.  
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Fig. 6. Microstratigraphic log of the section between 200-360 mm from the top of Trió 
stalagmite along with stable C and O isotope compositions. Sections not covered with thin 
sections are marked by X. C: Dense columnar calcite (light blue). Co: porous columnar calcite 
(dark blue). Cm: Microcrystalline calcite, Ms: micrite/microsparite with high detrital content. 
  

6. Discussion 

 

6.1. Comparison of stable isotope compositions of bones and bivalve shells 

 Bone carbonate has the advantage, relative to stalagmite calcite, that it forms at 

constant body temperature and its oxygen isotope composition directly reflects those of the 

ambient water and food that the animal consumed, provided that the bones preserve their 

original structural carbonate content and its isotopic composition, and diagenetic carbonate 

can be eliminated (Lee-Thorp, 2002). Carbon isotope data of bones are not interpreted here 

as the bone of sample 71/91 derived from a pig, whereas the other samples are from cattle 

and deer with different diets, and hence different food δ13C signatures. Since the oxygen 

isotope composition of meteoric water largely reflects air temperature changes at mid-

latitude continental regions (Dansgaard, 1964; Rozanski et al., 1993), elevation in δ18O values 

in bone carbonate would indicate higher δ18O values in the consumed water, which is 

thought to be coeval with the meteoric water, and consequently, indicate a warmer climate. 
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These considerations lead to the assumption that the elevated δ18Obone values (Fig. 3D) 

might reflect a warmer climate at about 3670 cal years BP.  

 Mussel shells of the Unio sp. were found in the same archaeological excavation sites, 

most probably buried as waste material from animal feeding. The mussels were collected by 

the Bronze Age people very likely from Lake Balaton, which is located in the immediate 

vicinity of the ancient settlements (Fig. 1). A comprehensive study of the C and O isotope 

compositions of modern shells from the lake found that the isotopic compositions are mainly 

determined by the lake water budget rather than water temperature (Schöll-Barna et al. 

2012). Low lake level caused by intense evaporation during drier periods is associated with 

elevated δ13C and δ18O values in the shells’ aragonite, whereas high lake level induced by 

decreased evaporation and/or increased precipitation and river water input (higher 

humidity) is reflected by low δ13C and δ18O values (Fig. 3). 

   

6.2. Temperature and humidity changes recorded by speleothem-based geochemical proxies 

 Before stable isotope compositions are interpreted, a short evaluation of 

petrographic observations and their implications on the stalagmite formation processes is 

given here.  

 Porous microcrystalline fabric is the most abundant fabric in the sample, while a truly 

continuous section of compact columnar fabric can be only found between 230-258 mm dft 

(Fig. 6). Microcrystalline calcite fabric in stalagmites was observed to form under higher (but 

variable) discharge than columnar fabric, with larger input of detrital and colloidal particles 

(Frisia et al., 2000). Seasonally forming porous fabric in lamina couplets was connected to 

higher cave air temperatures in caves where temperature is related to cave air composition. 

In Katerloch cave, for example, a more porous columnar fabric formed during summer when 
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higher cave air temperature resulted in high pCO2 and low calcite supersaturation in the 

discharge, which was usually higher while laminae of compact columnar fabric formed 

during winter (Boch et al., 2011). Similar seasonality in cave air temperature and 

composition was also observed in Baradla Cave (Demény et al., 2017a) in the north-eastern 

part of Hungary; therefore, we can assume that the reason behind the alternating compact 

and more porous lamina couplets in microcrystalline calcite fabric could be the seasonal 

change in the cave’s environmental conditions. From this angle, the compact columnar 

fabric between 230-258 mm dft (Fig. 6) appears to be an outlier, as its lower section contains 

erosional surfaces, while the thin and parallel lamination in its upper section is also based on 

the alternation of compact calcite and thin detrital layers. Compact columnar fabric was 

associated with lower and more constant drip rates (Frisia and Borsato, 2010), while 

compact sub-laminae were linked to lower cave air temperatures, resulting in strong 

ventilation and low pCO2, which caused higher calcite supersaturation in the discharge. 

Another example for the connection between a more compact fabric, discharge and its 

carbonate supersaturation is the observations of Wróblewsky et al. (2017), based on recent 

flowstones, where more compact fabric precipitated at the season of lower discharge and 

higher supersaturation.  

 Columnar and microcrystalline calcite fabrics are considered to be formed under 

quasi-equilibrium conditions (Frisia and Borsato, 2010), which suggests that although there 

seems to be a connection between calcite fabric and stable oxygen isotopic composition (Fig. 

6), the stable isotope changes are not related to variations in equilibrium and disequilibrium 

conditions. This is supported by the fact that the δ13C and δ18O values of the Trió stalagmite 

are not correlated. 
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 Carbon and oxygen isotope compositions can be strongly affected by kinetic 

fractionation in well ventilated caves (Hendy, 1971, Mickler et al., 2004; 2006), producing 

positive δ13C-δ18O correlations and obscuring the climate-related signal. Hence, either the 

presence of kinetic fractionation has to be excluded on the basis of Hendy test analyses 

(Hendy, 1971), or additional information has to be gathered that supports the climate-

related meaning of the δ13C and δ18O values (Dorale and Liu, 2009). Since the samples 

studied in this paper were collected from a drill core, Hendy test analyses along single 

laminae could not be performed. However, the δ13C and δ18O values of the Trió stalagmite 

are not correlated, suggesting that the kinetic fractionation effect can be considered to be 

negligible. This statement is also supported by the textural characteristics (see above). Apart 

from ventilation-related kinetic fractionation, carbon isotope compositions of speleothem 

carbonate would reflect variations in the relative amount of biogenic CO2 dissolved from the 

soil atmosphere and seepage water evolution through carbonate rock dissolution, elevated 

degree of CO2 degassing associated with increased evaporation and carbonate precipitation 

along the solution migration pathway (see Fairchild and Baker, 2012). All of these processes 

are related to environmental humidity, as a higher amount of precipitation would i) promote 

soil activity producing more organic-derived CO2, ii) induce shorter residence times of 

seepage water in fractures and consequently changes in host rock dissolution and iii) fill up 

the fracture system with water. The decrease in the air filled void volume in the karstic 

system during high precipitation periods would decrease the degree of ventilation and hence 

evaporation efficiency, both in the fracture system and in the cave. A complete 

understanding of the behaviour of the karstic system would require detailed monitoring, 

including 14C activity measurements from a soil zone to the drip waters (Fohlmeister et al., 

2010). That was not possible due to the strict protection of the Trió Cave. In the absence of 
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such data, the relative contribution of host rock-derived carbon to biogenic (from soil 

respiration and decomposition of old organic matter) and atmospheric carbon (Fohlmeister 

et al., 2010; Griffiths et al., 2012; Noronha et al., 2014) is difficult to estimate. In order to 

determine the dominating process that governed δ13C changes in the Trió speleothem, 

additional humidity proxies are needed that would not depend on host rock dissolution and 

ventilation-related fractionation processes.  

 Such information on humidity changes can be found in the P concentration record. In 

general, higher P concentrations during more humid periods are consistent with the role of P 

as a nutrient element in soil biological activity (Huang et al., 2001; Fairchild et al., 2001), and 

hence its concentration in speleothems may be considered as a proxy for surface bio-

productivity (Treble et al., 2003). For a complete understanding, the entire soil and karst 

system should be monitored in order to determine the mechanisms of seasonal P 

mobilization, transport and incorporation into the speleothem structure (Borsato et al., 

2007), which would exceed the scope of this paper. In the absence of such detailed 

monitoring data, the coupled P and δ13C changes (Fig. 5) can be used to infer that δ13C can 

reflect past humidity fluctuations (Regattieri et al., 2016). 

 The entire stalagmite record starts at about 4.7 cal ka BP, while the period of 3.9 to 

3.2 cal ka BP was analysed at high resolution (0.5-1 mm, corresponding to 1-30 years, 

depending on growth rate). At ~ 3.9 cal ka BP, the δ13C values show a negative shift (Fig. 5), 

indicating a short-term humid phase. At about 3.8 cal ka BP, the δ13C values are elevated, 

suggesting a relatively arid climate that continuously changes to higher humidity, reaching a 

δ13C minimum at ~3.65 cal ka BP. After the negative δ13C peak, the data indicate decreasing 

precipitation with strong δ13C fluctuations. A prominent positive δ13C peak appears at 3.58 

cal ka BP that was interpreted as a sign of soil activity decrease due to deposition of volcanic 
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material (Siklósy et al., 2009). The most arid conditions can be expected at ~3.2 cal ka BP 

when δ13C reached its highest values.  

 An independent view on precipitation level is provided by the stable isotope 

compositions of mussel shells (Fig. 5). According to Schöll-Barna et al. (2012), the elevated 

δ13C and δ18O values in the mussel shell carbonate would correspond to more arid 

conditions at about 3.8 cal ka BP, and the strong negative isotope shifts between ~3.7 and 

3.6 cal ka BP would indicate more humid conditions. The shell data reflect changes in the 

speleothem δ13C record that starts with a short-term humid peak at 3.9 ka followed by an ~1 

‰ rise and a strong decrease between 3.7 and 3.6 cal ka BP. The shell δ13C and δ18O data 

independently support the assumption that the speleothem δ13C and P records reflect 

humidity changes, with more arid conditions around 3.8 cal ka BP and a humid peak at about 

3.7-3.6 cal ka BP. 

 Stable oxygen isotope composition of speleothem calcite is basically determined by 

formation temperature and water composition, expressed by the temperature-dependent 

calcite-water fractionation relationship (O’Neil et al., 1969). Further, the drip water 

composition is a result of the combined effects of different processes acting in the 

atmosphere and in the karstic system (Lachniet, 2009). Moisture origin, transport trajectory, 

rainfall level, evaporation, seasonal variations (relative amounts of cold and warm seasons’ 

precipitation), infiltration, migration routes and mixing in the karstic system, as well as 

evaporation in the rock fractures and cave caverns all affect the δ18O value of the drip water 

(Lachniet, 2009). Additionally, the δ18O values of precipitation water (and hence drip water) 

depend on atmospheric temperature, with a gradient of about 0.3 ‰°C–1 in mountainous 

areas of Hungary (see Demény et al., 2017b), causing 18O-enrichment in the drip water with 

elevated temperature. The temperature-dependent calcite-water oxygen isotope 
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fractionation gradient is –0.24 ‰ °C–1 (O’Neil et al., 1969). As a result, the net effect is a 

slight positive relationship between δ18O values of the precipitated calcite and formation 

temperature. However, the effects described above show that although the δ18Ocalcite values 

are basically indicating temperature changes, the variations may not be easy to interpret 

without additional information.  

 

 

Fig. 7. Stable hydrogen isotope compositions (relative to V-SMOW) of inclusion-hosted water 
and oxygen isotope compositions of the host calcite (relative to V-PDB) at the inclusion 
sampling intervals of the Trió stalagmite. The grey line (arbitrarily placed within the sample 
points) marks slope=8 characteristic for the Global Meteoric Water Line (Craig, 1961). 
 

 An independent view on drip water composition is provided by H isotope analyses of 

inclusion-hosted water. The δD values show a positive correlation with the δ18O values of 

the host calcite that match a line with a slope of 8 (Fig. 7). If the host calcite’s oxygen isotope 

composition reflects the drip water composition as described above, then the local meteoric 

water line’s slope (about 7.9, Fórizs et al., 2013) would be transferred to the δD-δ18Ocalcite 

correlation, as observed in Fig. 7. This gives credit to the assumption that the Trió 

speleothem’s δ18O record reflects temperature changes. 
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 The δD and the δ18Ocalcite values together can be used to estimate formation 

temperatures. Calculation of formation temperature was conducted following two concepts 

based on measured hydrogen isotope compositions of inclusion-hosted water. 

 Procedure 1. The steps of the procedure of Zhang et al. (2008) are the following:  

 1) The oxygen isotope composition of water (δ18Ow) is calculated from the δD data 

using the linear relation (δD=7.9·δ18O+11.1) determined for spring waters of the Mecsek 

karstic region (Koltai et al. 2013).  

 2) Mean oxygen isotope compositions for calcites of the 3-5 mm sampling spots of H 

isotope analyses are gathered from the higher resolution data of Siklósy et al. (2009).  

 3) Oxygen isotope fractionation values between calcite and water can be calculated 

using the equation:  = (1000+δ18Ocalcite)/(1000+δ18Owater).  

 4) Then formation temperature is calculated using the relationship between calcite-

water oxygen isotope fractionation and temperature. The empirical equation 

1000·ln=17.66·(1000/T)–30.16, where T is temperature in K (Johnston et al., 2013), is used. 

Note here that this paper also included the earlier data from both popular and frequently 

cited seminal papers (Coplen, 2007 and Tremaine et al., 2011) and reported new ones, 

resulting in a presumably more robust equation based on a more extensive dataset. 

Although it is worth mentioning, that for a calcite precipitated in specific cave environment, 

the potentially important factors may not be all recognized, hence it is difficult to choose a 

specific equation. For a detailed discussion on the effect of the governing factors 

(temperature, pH, growth rate, degassing and drip rate effects) on calcite-water isotope 

fractionation, see Watkins et al. (2014). 
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 Procedure 2. The procedure used by Demény et al. (2017b) is based on the measured 

δD values and the relationship between δD and air temperature (δD-T gradient). The steps in 

the procedure are the following: 

 1) The differences between the δD values of inclusion water and the present-day drip 

water δD (~–67 ±2 ‰, 7 occasional sampling from February to June, 2014, Gy. Czuppon, 

unpublished data) are calculated. 

 2) The δD differences are divided by the δD-T gradient (the relationship between 

precipitation H isotope composition and atmospheric temperature) that gives the difference 

between the past and the present-day temperatures. A preliminary monitoring study of the 

local precipitation’s stable isotope composition (from January 2013 to November 2016, 

monthly sampling, n=45, Gy. Czuppon, unpublished results) yielded a δD-T gradient of 2.0 

‰°C–1. It is interesting to note that the gradient is very close to the value of 2.1 ‰°C–1 

determined by Demény et al. (2017b) for a cave in a similar environment and about 200 km 

to the north (Baradla Cave). The present-day drip water composition of the Baradla Cave (–

64.6 ±1.4 ‰, Czuppon et al., 2017) is also close to the Trió compositions (δD=–67 ‰), which 

gives credit to the use of the δD-T gradient.  

 3) Finally, the temperature differences are added to the present-day annual mean 

temperature (~10 °C, Muladi et al., 2013) to yield the past multiannual mean air 

temperature. 

  The temperatures obtained by applying these two procedures are plotted in Fig. 5. 

The results provided using the δD-T gradient (procedure 2) are either very close or higher 

than those yielded by the coupled δD-δ18Ocarb calculations (procedure 1). The former results 

are closer to present-day cave temperatures (7 to 10 °C from surface entrance to a deep 

chamber, Muladi et al., 2013), but the warmer-than-present temperatures at 3.7-3.8 cal ka 
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BP and the very cold conditions at 3.3-3.6 cal ka BP are reproduced in both calculations. The 

mean difference between the curves from procedure 2 and procedure 1 is 3.6 °C, which is 

close to the ~3 °C difference between the deep chambers and the sites close to the cave 

entrance (Muladi et al., 2013). As procedure 1 corresponds to formation temperature (about 

8 °C at the present sampling site), while procedure 2 yields annual mean atmospheric 

temperature (about 10 °C), the observed difference may be meaningful, but calculation 

uncertainties should be taken into account.  

 The calculations using the concept of Zhang et al. (2008) are affected by uncertainties 

in the meteoric water line equation, the selected calcite-water oxygen isotope fractionation 

equation and the analytical errors for the isotope analyses. Using the Global Meteoric Water 

line equation (δD=8·δ18O+10; Craig, 1961) instead of the karstic water line of Koltai et al. 

(2013), and substituting 0.2 and 3‰ analytical errors for δ18Ocalcite and δD values, 

respectively, a maximum uncertainty of about 3.6 °C was obtained (based on a worst case 

scenario with both analytical errors acting in the same direction, which is unlikely), which is 

close to the difference between the results of the two procedures. 

 Opposite to the former method that suffers from several unknown variables, the 

uncertainties of the calculation using the δD-T gradient depend only on the analytical 

precision and the potential changes in the reference water composition, and the gradient 

value with time. Despite these differences, the δD-T gradient-based calculation yielded a 

similar pattern to the Zhang et al. (2008) procedure’s results. Taking the relatively stable 

conditions within the Holocene into account, the temperatures around 12 °C are difficult to 

explain with atmospheric warming producing a 2°C rise in annual average temperature. 

However, increasing the reference δD value from –67 to –63 ‰ would shift the calculated 

temperatures by 2°C. This means that a slight increase in the relative contribution of 
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summer (D-enriched) precipitation in the infiltrated water or evaporation along the 

infiltration and the percolation route (D-enrichment during drier period) can easily explain 

the calculated - and hence in this case virtual - temperature rise. On the other hand, 

changing the reference δD value to –80 °C would bring the calculated temperatures of the 

3.55-3.3 cal ka BP period to present-day values. Such low δD values are generally measured 

during the winter months, as determined for the Baradla Cave system (Demény et al., 

2017b) and for the Trió cave’s area, by the preliminary monitoring of Gy. Czuppon (for 

December-January-February of 2013-2016, δD= –85 ±16 ‰). This suggests an increased 

contribution of winter precipitation to the percolating karstic water during the period of 3.55 

to 3.3 cal ka BP.  

 Although not fully independent, as they both used the δD values as an input 

parameter, the similarities in the temperature patterns obtained by the two methods 

support each other. The above considerations indicate that the temperature calculations 

would not only yield information on warming and cooling, but seasonality variations may 

also be inferred from the results. The required seasonality changes would correspond to 

extreme conditions, the real environmental conditions were most probably characterized by 

coupled warming + a summer precipitation increase, and cooling + a winter precipitation 

increase. 

 Another important geochemical dataset is the Mg concentration record (Fig. 5). 

Similar to the stable isotope data, Mg concentrations in the drip water and the speleothem 

carbonate are affected by numerous processes: rock dissolution during water migration, 

prior calcite precipitation in the fractures and voids, evaporation, mixing of karstic water 

systems, and temperature-dependent partitioning between drip water and carbonate (see 

Fairchild and Baker, 2012). Most of these effects are related to humidity as a lower amount 
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of meteoric precipitation and decreased water infiltration would increase the effect of 

evaporation and the water residence time in the karstic system, resulting in an elevated Mg 

content in the drip water and consequently in the speleothem, during drier periods (Huang 

et al., 2001). Additionally, strong evaporation in the water migration pathway induces prior 

calcite precipitation in the rock fractures that can also cause Mg enrichment in the drip 

water (Borsato, et al., 2016). However, the pattern of Mg concentration follows the δ18O 

variation (Fig. 5), indicating a common mechanism behind these changes. Interestingly, the 

temperature calculations yielded warm conditions at ~3.8-3.7 and ~3.2-3.1 cal ka BP when 

Mg concentrations are high and cold conditions around 3.5 cal ka BP when the Mg 

concentrations reached a minimum. A positive Mg-T relationship has been experimentally 

determined by Huang and Fairchild (2001), although the effect of calcite-solution 

partitioning cannot explain the ~200 ppm Mg content fluctuations observed here. This 

indicates that additional (e.g., humidity-related) factors may also have affected the Mg 

concentrations. At higher(lower) ambient temperatures the degree of evapotranspiration is 

also higher(lower), leading to reduced(increased) infiltration and increased(decreased) trace 

element contents and δ18O values in the percolating water. The long-term similarity in the 

δ13C, δ18O, Mg and P patterns (higher δ13C-δ18O-Mg and lower P values at ~3.8 and 3.2 ka BP 

and lower δ13C-δ18O-Mg values with higher P concentrations between these periods, Fig. 5) 

suggests that coupled changes in temperature and soil aridity affected these variables, but 

the short-term differences (e.g., δ13C minimum at 3.65 ka BP and δ18O minimum at 3.47 cal 

ka BP) indicate that precipitation amount and temperature changes were independent in a 

centennial scale. However, the good fit of calculated temperature data, the Mg and δ18O 

variations and the expected calcite-solution Mg partitioning indicates that these records 

reflect real temperature variations. 
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 As we have seen, temperature fluctuations may be recorded by the bone δ18O values 

that have their maximum at ~3.7 ka, when the highest temperature was obtained from the 

δD values and when the speleothem δ18O values and Mg concentrations are high (Fig. 5). 

The changes in bone composition indicate that the both the δD data and the δ18O-Mg 

records reflect temperature variations. 

 

Fig. 8. Temperature and precipitation proxy records for the Trió cave stalagmite (this study) 
and regional records. Data sources: Corchia cave (northern Italy): Regattieri et al. (2014); 
Renella cave (northern Italy): Zanchetta et al. (2016); Sofular Cave (northern Turkey): 
Fleitmann et al. (2009); Spannagel Cave (Austria): Fohlmeister et al. (2013); Bunker Cave 
(Germany): Fohlmeister et al. (2012); Lake Ighiel (Romania): Haliuc et al. (2017). Dark grey 
bars indicate humid phases, light grey bars mark dry periods. 
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6.3. Comparison with regional records 

 Speleothem-based temperature and/or humidity proxy records that cover the period 

from 4 to 3 cal ka BP at a temporal resolution comparable with the Trió stalagmite record 

(~8 years) are rather scarce in Europe. For the Mediterranean region, stable isotope and 

trace element records from the Corchia and Renella caves (Northern Italy, Regattieri et al., 

2014; Zanchetta et al., 2016) are available for the period of 4 to 3 cal ka BP with average 

temporal resolutions of 16 and 11 years. The records of Drysdale et al. (2006) and Frisia et al. 

(2005) were not included here due to the relatively low temporal resolution (~60 and 80 

years, respectively). The δ13C record from the Sofular Cave (stalagmite SO-1), northern 

Turkey (Fleitmann et al., 2009) was selected due to the highly precise ages and the high 

resolution of the isotope record (~3 years on average). Although the precipitation level and 

moisture transport information provided by the SO-1 record is representative mainly for the 

Black Sea region (Fleitmann et al., 2009), the atmospheric teleconnections (Türkes and Erlat, 

2003) indicate that the isotope patterns may be compared with European records.  

 In central Europe, speleothems from the Spannagel Cave provided highly resolved 

(~1.5 years) δ18O data (the COMNISPA II record, Fohlmeister et al., 2013) that can be 

compared with the data presented in this paper. The composite oxygen isotope record of 

five stalagmites collected in the Spannagel Cave, Austria (COMNISPA II) has been interpreted 

as a proxy for winter precipitation level and temperature variations, related to the North 

Atlantic Oscillation (Mangini et al., 2007; Fohlmeister et al., 2013). Further to the north-

western part of Europe, Mg/Ca data from the BU-4 stalagmite of the Bunker Cave, Germany 

(Fohlmeister et al., 2012) reflect humidity changes with low Mg/Ca values corresponding to 

elevated precipitation levels and vice versa (temporal resolution: ~8 years).  
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 Although not related to speleothem research, a lake sediment record from the 

Trascău Mts (Lake Ighiel, Romania) is included in the discussion due to its well-constrained 

age-depth model and the high (~annual) resolution of the geochemical record obtained by 

an XRF scanner (Haliuc et al., 2017). The Ti counts in the Lake Ighiel sequence are interpreted 

as a proxy for runoff events by Haliuc et al. (2017). 

 The records obtained in the present study and selected from the literature are 

compiled in a composite figure (Fig. 8), whose complex interpretation and a synthesis 

follows below. 

 The period between 3.9 and 3.7 cal ka BP starts with a peak representing a period of 

high humidity, recorded by the δ13C records of the Trió Cave and the mussel shell remnants 

that changes to drier conditions on the base of elevated dc that changes to drier conditions 

on the base of elevated δ13C values of both carbonate types (Fig. 5). The high isotope values 

of the Trió and the Renella stalagmites and the elevated Mg/Ca data of the Bunker Cave 

stalagmite around 3.8 ka (Fig. 8) indicate a relatively dry environment in eastern and 

western Central Europe that ends with an abrupt change to very humid conditions at 3.7 ka. 

The event-like character of this humid phase is shown by the negative δ13C peak and the P 

concentration increase in the Trió stalagmite, the strong negative δ13C and δ18O shifts in the 

mussel shells of Lake Balaton, the negative δ13C and δ18O shifts in the Renella and the 

Corchia cave records, the δ18O peak in the COMNISPA II record, the sudden decrease of the 

Mg/Ca values in the Bunker Cave stalagmite and the Ti peak in the Ighiel lake sediments (Fig. 

8). Contemporaneously, the H isotope compositions and the calculated temperatures are 

shifted to elevated values (Fig. 8, top panel). As we have seen, the high calculated 

temperatures, well above 10°C, can be explained by a relative increase in summer 

precipitation or evaporatively modified composition of the seepage water. The same 
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conclusion for temperature rise can be drawn from the bone carbonate δ18O values that 

have their maximum in this period (Fig. 5).  

 The carbon isotope compositions of the Trió and the Sofular stalagmites indicate a 

short-term increase (along with P concentration decrease in the Trió stalagmite) between 

3.65 and 3.5 cal ka BP (Figs. 5 and 8) that might be related to an environmental deterioration 

event (Siklósy et al., 2009) related to the Thera eruption (Manning et al., 2006). In addition 

to this local effect, precipitation level and/or temperature were continuously changing as 

indicated by the decreasing Mg concentrations and δ18O values (temperature change) and 

the increased P contents (humidity change) in the Trió stalagmite, the fluctuating, but rising 

δ13C values of the Corchia stalagmite and the decreasing Bunker Cave Mg/Ca record (Fig. 8). 

Although not plotted in Fig. 8 due to the low sampling resolution (~50 years), it is important 

to note that the δ18O record for Lake Shkodra (Montenegro and Albania, Zanchetta et al., 

2012) indicates short-term dry periods around 3.5 and 3.3 cal ka BP that are close (within 

dating precision) to the positive δ13C peaks in the Trió record.  

 The Trió Mg concentrations and δ18O values (Fig. 5), the Renella and Corchia records 

and the Bunker Cave Mg/Ca data show a distinct negative peak between 3.4 and 3.5 cal ka 

BP (Fig. 8), indicating a regionally important climate event. The Trió δ13C values are still low 

compared to the subsequent period of 3.2 to 3.0 cal ka BP, but slightly higher than in the 

period of 3.7 to 3.6 cal ka BP, suggesting that the changes are not simply caused by 

increasing annual precipitation level. The calculated temperatures for the Trió stalagmite 

reach a minimum around 3.3-3.6 cal ka BP that practically covers the low δ18O peak due to 

the δD sampling resolution (about ±50 years). The unrealistically low temperature (<0 °C, 

i.e., freezing in the cave) is most probably related to a bias in the δD values towards winter 

precipitation dominance (see above). All this information indicates elevated precipitation 
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with an increased winter/summer ratio for the period of 3.5 to 3.4 cal ka BP, with the 

possibility of cooling in the region of the Trió Cave, as summarized in the top panel of Fig. 8. 

 Following the humidity peak, the environmental parameters changed to warmer and 

drier conditions, as indicated by the constant rising of the Mg content, carbon and oxygen 

isotope compositions of the Trió, the Corchia, the Bunker and the Sofular Cave’s stalagmites. 

 

 

Fig. 9. Comparison of paleoclimate and archaeological information gathered for the period of 
cca. 3.9 to 3.2 cal ka BP (1950 to 1250 cal BC). See text for further details. 
 

6.4. Societal changes related to environmental conditions 

 

 Screening the currently available archaeological information from the Pannonian 

Basin for the period of about 4 to 3 cal ka BP (see section 2), the only societal change that 

can be related to climate conditions is changes in settlement patterns. One of the major 

features of the Middle Bronze Age in this territory is the formation of the so-called ‘tell’ or 

stratified settlements. An increased number and size of settlements during the MBA, 

inferred from the archaeological evidence, was interpreted as an indication of demographic 
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growth (Chapman, 1999; Szeverényi, 2004; Kiss, 2012; Fischl et al., 2013), lasting until the 

short-lived (~150 years) Koszider period around 3.5 cal ka BP. Then, the tell settlements 

were replaced by a more open habitation type and a strong population decrease can be 

assumed, although it should be mentioned that these did not take place equally in the entire 

Pannonian Basin (see section 2). The associated cultural transition was related to the 

Tumulus culture, which is characterized by sporadically occurring open settlements, 

indicating decreased population compared to the early part of the MBA. 

 These settlement pattern variations can be partially explained by the reconstructed 

paleoclimate changes. In a comprehensive review, Fischl et al. (2013) summarized current 

knowledge on environmental effects on societal changes that can be compared with the 

climate conditions inferred from the speleothem and shell compositions (Fig. 9). The period 

between ~4 and 3.5 cal ka BP is characterized by fluctuating humidity but a relatively warm 

climate that provided appropriate conditions for agriculture and demographic growth. These 

environmental conditions ended with strong cooling associated with an increase in winter 

precipitation that may have contributed to the sudden drop in population size.  

 The Koszider period (~3.55-3.45 cal ka BP, see Fischl et al., 2013) is practically (within 

dating precision) coeval with the Thera eruption in Santorini that caused significant cultural 

collapse in the Eastern Mediterranean. The effects of the Thera eruption have been detected 

in the stable isotope and trace element compositions of the Trió speleothem (Siklósy et al., 

2009). The short-lived environmental deterioration and the decrease in soil activity is 

reflected by the positive δ13C and negative P concentration peaks in the Trió speleothem 

record (Fig. 5) at 3580 ±10 cal years BP. The suddenly deteriorating environmental 

conditions most probably contributed to the demographic decrease inferred for the Koszider 

period. 
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 After the first phase of the LBA (~3.2 cal ka BP), climate conditions became drier and 

warmer (Fig. 9), but the number of settlements in all the above-mentioned regions was still 

lower than in the MBA. The dry/warm peak at about 3.2 cal ka BP (indicated by the positive 

δ13C, δ18O and temperature peaks in the Trió speleothem record, Fig. 5) has also been 

observed in the Mediterranean region as a severe societal collapse (Drake, 2012; Langgut et 

al., 2015; Knapp and Manning, 2016), suggesting that the detected overall fall in the number 

of sites in the Tumulus period in the Pannonian Basin (V. Szabó, 1999; Sánta, 2010, 2012) can 

be partly related to environmental deterioration.  

 Although a comparison with other studies on climate-society relationships in the 

European-Mediterranean region seems to be a straightforward step, the results of such 

comparisons are rather questionable. As Knapp and Manning (2016) pointed out, the 

changes are too complex and the observations are sometimes contradictory, even within the 

Mediterranean region. Opposing climate changes have been detected for the same periods 

in northern and southern parts of the Alps (Valsecchi et al., 2006; Tinner et al., 2003), and 

similarly negative relationships appear if the Trió speleothem record is compared with 

Bronze Age water levels in Ireland (Amesbury et al., 2008), which suggest cold and humid 

conditions around 3.3 to 3.1 cal ka BP, when the Trió record indicates a warm and dry 

climate. The solution is the highly mosaic environmental pattern in the European-

Mediterranean region that is convincingly demonstrated by the millennial temperature and 

precipitation map series of Mauri et al. (2015). The evaluation of the complex and 

temporally varying picture of climate conditions, and their effects on societal transitions, 

requires further, large scale studies. 

 

6. Conclusions 
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The hydrogen isotope composition of fluid inclusion hosted waters from a stalagmite 

from the Trió Cave, Southern Hungary were obtained by vacuum crushing and isotope ratio 

mass spectrometry. Together with the published oxygen isotope composition of the host 

calcite, the H isotope data were used to calculate water composition and past formation 

temperatures for the period from 3 to 4 cal ka BP. In addition to temperature variations, 

humidity changes were inferred from coupled fluctuations in stable carbon isotope 

composition and P concentrations. 

As independent proxies for temperature and precipitation, stable C and O isotope 

data were obtained for lake dwelling bivalve shells and animal bones collected from 

archaeological excavations of the Bronze Age (about 3 to 4 cal ka BP) at Lake Balaton 

(Western Hungary). A combined evaluation of the various proxy data and their comparison 

with other high-resolution paleoclimate records resulted in a complex climate evolution 

scheme, including temperature, humidity and seasonality changes on a regional scale. The 

environmental variations were associated with societal changes in the same period, among 

which, settlement pattern changes seem to best reflect climate conditions. 
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Archäologie Österreichs 17, 4–17. 

Kulcsár, G., 2009. The Beginnings of the Bronze Age in the Carpathian Basin. The Makó–
Kosihy–Čaka and the Somogyvár–Vinkovci cultures in Hungary. Varia Archaeologica 
Hungarica 23, Budapest. 

Kulcsár, G., Szeverényi, V., 2013. Transition to the Bronze Age: Issues of Continuity and 
Discontinuity in the First Half of the Third Millennium BC in the Carpathian Basin. In: 
Heyd, V., Kulcsár, G., Szeverényi, V. (Eds.), Transitions to the Bronze Age. 
Interregional Interaction and Socio–Cultural Changes in the Tird Millennium BC 
Carpathian Basin and Neighbouring Regions. Archaeolingua, Budapest, pp. 67–92. 

Lachniet, M. S., 2009. Climatic and environmental controls on speleothem oxygen-isotope 
values. Quat. Sci. Rev. 28, 412–432. 

Lamb, H.H., 1982. Climate, History and the Modern World. Methuen, London, p. 433. 
Langgut, D., Finkelstein, I., Litt, T., Neumann, F.H., Stein, M., 2015. Vegetation and Climate 

Changes during the Bronze and Iron Ages (~3600–600 BCE) in the Southern Levant 
Based on Palynological Records. Radiocarbon 57, 217–235. 

Lee-Thorp, J., 2002. Two decades of progress towards understanding fossilization processes 
and isotopic signals in calcified tissue minerals. Archaeometry 44, 435–446. 

Longinelli, A., 1984. Oxygen isotopes in mammal bone phosphate: a new tool for 
paleohydrological and paleoclimatological research? Geochim. Cosmochim. Acta 48, 
385–390. 

Luz, B., Kolodny, Y., 1985. Oxygen isotope variations in phosphate of biogenic apatites, IV. 
Mammal teeth and bones. Earth Planet. Sci. Lett. 75, 29–36. 

Mangini, A., Verdes, P., Spötl, C., Scholz, D., Vollweiler, N., Kromer, B., 2007. Persistent 
influence of the North Atlantic hydrography on central European winter temperature 
during the last 9000 years. Geophys. Res. Lett. 34, L02704. 

Manning, S.W., Ramsey, C.B., Kutschera, W., Higham, T., Kromer, B., Steier, P., Wild, E.M., 
2006. Chronology for the Aegean Late Bronze Age 1700-1400 B.C. Science 312, 565–
569. 

Mauri, A., Davis, B.A.S., Collins, P.M., Kaplan, J.O., 2016. The climate of Europe during the 
Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. 
Quaternary Science Reviews 112, 109–127. 

Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, 
E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G. Rack, F., 
Staubwasser, M., Schneider, R.R., Steig, E.J., 2004. Holocene climate variability. 
Quaternary Research 62, 243–255. 

Meller, H., Bertemes, F., Bork, H.-R., Risch, R. (Eds.), 2013. 1600 BC – Cultural change in the 
shadow of the Thera-Eruption? Tagungen des Landesmuseums für Vorgeschichte 
Halle (9). Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt – 
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Figure captions 
 
Fig. 1. Locations of the archaeological site of Ordacsehi-Bugaszeg (bivalve shells) and the Trió 
Cave (stalagmite). Potential lake water levels are shown in C as heights above sea level. 
 
Fig. 2. An age-depth model established from the original U/Th data of Siklósy et al. (2009) 
using the StalAge algorithm (Scholz and Hoffmann, 2011). The grey arrow marks the 
direction to the origin. 
 
Fig. 3. AMS 14C ages (A) and stable C and O isotope compositions (in ‰ relative to V-PDB) of 
carbonate contents of Unio sp. shells (B and C) and animal bones (D) collected from 
archaeological excavation sites of Ordacsehi-Bugaszeg (at Lake Balaton, Western Hungary). 
 
Fig. 4. Carbonate fabrics occurring in the Trió core. (a) Porous columnar fabric with two 
orders of lamination (sub-laminae connected to thin detrital layers are aligned by blue 
arrows, while the macroscopically visible compact laminae are aligned by white arrows). (b) 
Compact columnar fabric with low porosity. (c) Microcrystalline fabric with interfingering 
extinction boundaries and high porosity. (d) Erosion surface in the lowermost section of the 
compact columnar fabric aligned by white arrow, covered by a series of brown laminae of 
detrital origin. 
 
Fig. 5. Stable isotope compositions of shells and bones collected from archaeological 
excavations, H, C and O isotope compositions inclusion-hosted water and the host calcite 
along with P and Mg concentrations of the Trió stalagmite (Siklósy et al., 2009). Proxy 
records are arranged to reflect humidity (shell δ13C and δ18O, Trió stalagmite P content and 
and δ13C) and temperature (Trió stalagmite δD, calculated temperatures, bone δ18O, Trió 
stalagmite Mg contents and δ18O). Calculated temperatures obtained by procedures 1 and 2 
(see text) are shown by solid and dashed lines, respectively.  
 
Fig. 6. Microstratigraphic log of the section between 200-360 mm from the top of Trió 
stalagmite along with stable C and O isotope compositions. Sections not covered with thin 
sections are marked by X. C: Dense columnar calcite (light blue). Co: porous columnar calcite 
(dark blue). Cm: Microcrystalline calcite, Ms: micrite/microsparite with high detrital content. 
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Fig. 7. Stable hydrogen isotope compositions (relative to V-SMOW) of inclusion-hosted water 
and oxygen isotope compositions of the host calcite (relative to V-PDB) at the inclusion 
sampling intervals of the Trió stalagmite. The grey line (arbitrarily placed within the sample 
points) marks slope=8 characteristic for the Global Meteoric Water Line (Craig, 1961). 
 
Fig. 8. Temperature and precipitation proxy records for the Trió cave stalagmite (this study) 
and regional records. Data sources: Corchia cave (northern Italy): Regattieri et al. (2014); 
Renella cave (northern Italy): Zanchetta et al. (2016); Sofular Cave (northern Turkey): 
Fleitmann et al. (2009); Spannagel Cave (Austria): Fohlmeister et al. (2013); Bunker Cave 
(Germany): Fohlmeister et al. (2012); Lake Ighiel (Romania): Haliuc et al. (2017). Dark grey 
bars indicate humid phases, light grey bars mark dry periods. 
 
Fig. 9. Comparison of paleoclimate and archaeological information gathered for the period of 
cca. 3.9 to 3.2 cal ka BP (1950 to 1250 cal BC). See text for further details. 
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Table 1 
Archaeological cultures, animal species, types, stable carbon isotope compositions and AMS 
14C ages for bones of the Ordacsehi archaeological excavation sites. Ages are in years, δ13C 
values are in ‰ relative to V-PDB. δ13C values were determined by isotope ratio mass 
spectrometry, „AMS” means δ13C values determined by AMS analyses for correction purpose 
(not to be reported).  
 

Sample # culture animal species bone type 

1296/1880 Somogyvár-Vinkovci bos taurus centrotarsale 
1882/2790 Kisapostag bos taurus radius  
1309/1902 Late Kisapostag - Early encrusted pottery bos taurus mandibula 
71/91 Encrusted Pottery sus domesticus radius/ulna 
1325/1925 Tumulus cervus elaphus metatarsus 
 

sample # Lab code δ13C 14C age BP age cal. BP median cal BC 
    (2σ range) 

1296/1880 SUERC-36668  –22.1 3615 ± 35 4071-4042 (5%) 3925 1975 
    3991-3837 (90.4%) 
 
1882/2790 SUERC-36669  –20.0 3505 ± 35 3875-3691 (94.4%) 3774 1824 
    3658-3650 (1%) 
 
1309/1902 VERA-5168 AMS 3535 ± 35 3905-3700 3814 1864 
 
71/91 SUERC-36667  –20.5 3420 ± 35 3825-3790 (7.9%) 3669 1719 
    3770-3746 (3.5%) 
    3730-3576 (84%)  
 
1325/1925 VERA-5167 AMS 3315 ± 40 3638–3453 3539 1589 
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Table 2 
Stable hydrogen isotope compositions of fluid inclusion hosted water (δD), and oxygen 
isotope compositions of calcite of the Trió Cave (δ18OTrió), Southern Hungary, and stable 
carbon and oxygen isotope compositions of Unio sp. shells and animal bones (see Table 1) 
collected at the archaeological excavation sites of Ordacsehi, Western Hungary. All data are 
in ‰ relative to V-SMOW (δD) or to V-PDB (δ13C and δ18O). δ18O values of stalagmite calcite 
(δ18OTrió) are averages for the δD sampling sections calculated from the data reported by 
Siklósy et al. (2009). Shell compositions are averages for archaeological culture periods (see 
also Supplementary Table 1). Depth: distance from the outer surface of the stalagmite drill 
core. 
 

Stalagmite data  Bones 
depth[mm] δD δ18OTrió sample # δ13C δ18O 

337 –72 -7.2 1296/1880 –13.6 –6.8 
292 –76 -7.4 1309/1902 –10.0 –5.0 
276 –75 -7.1 1882/2790 –14.1 –4.4 
272 –63 -6.6 71/91 –13.6 –3.3 
259 –65 -8.3 1325/1925 –12.3 –5.4 
254 –74 -7.8    
246 –90 -8.0    
241 –85 -8.8    
233 –86 -7.8    
222 –63 -6.1    
216 –74 -6.8    
209 –69 -7.5    
109 –68 -7.2    
66 –62 -7.7      

Shells 
Culture periods  δ13C   δ18O   
 median age median LQ UQ median LQ UQ 

Somogyvár-Vinkovci 3925 -6.3 1.2 0.3 -3.9 1.2 0.3 
Kisapostag 3774 -4.3 1.1 0.6 -1.8 0.4 0.8 
Late Kisap. - Early encr. 3814 -4.5 0.4 0.5 -2.4 0.9 1.6 
Encrusted Pottery 3669 -11.0 0.8 1.1 -7.9 0.1 0.3 
Tumulus 3539 -4.7 0.4 0.4 -2.8 1.2 0.5 
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