23,149 research outputs found

    Highly tunable spin-dependent electron transport through carbon atomic chains connecting two zigzag graphene nanoribbons

    Full text link
    Motivated by recent experiments of successfully carving out stable carbon atomic chains from graphene, we investigate a device structure of a carbon chain connecting two zigzag graphene nanoribbons with highly tunable spin-dependent transport properties. Our calculation based on the non-equilibrium Green's function approach combined with the density functional theory shows that the transport behavior is sensitive to the spin configuration of the leads and the bridge position in the gap. A bridge in the middle gives an overall good coupling except for around the Fermi energy where the leads with anti-parallel spins create a small transport gap while the leads with parallel spins give a finite density of states and induce an even-odd oscillation in conductance in terms of the number of atoms in the carbon chain. On the other hand, a bridge at the edge shows a transport behavior associated with the spin-polarized edge states, presenting sharp pure α\alpha-spin and β\beta-spin peaks beside the Fermi energy in the transmission function. This makes it possible to realize on-chip interconnects or spintronic devices by tuning the spin state of the leads and the bridge position.Comment: 7 pages, 9 figure

    ZIKV infection activates the IRE1-XBP1 and ATF6 pathways of unfolded protein response in neural cells.

    Get PDF
    BACKGROUND: Many viruses depend on the extensive membranous network of the endoplasmic reticulum (ER) for their translation, replication, and packaging. Certain membrane modifications of the ER can be a trigger for ER stress, as well as the accumulation of viral protein in the ER by viral infection. Then, unfolded protein response (UPR) is activated to alleviate the stress. Zika virus (ZIKV) is a mosquito-borne flavivirus and its infection causes microcephaly in newborns and serious neurological complications in adults. Here, we investigated ER stress and the regulating model of UPR in ZIKV-infected neural cells in vitro and in vivo. METHODS: Mice deficient in type I and II IFN receptors were infected with ZIKV via intraperitoneal injection and the nervous tissues of the mice were assayed at 5 days post-infection. The expression of phospho-IRE1, XBP1, and ATF6 which were the key markers of ER stress were analyzed by immunohistochemistry assay in vivo. Additionally, the nuclear localization of XBP1s and ATF6n were analyzed by immunohistofluorescence. Furthermore, two representative neural cells, neuroblastoma cell line (SK-N-SH) and astrocytoma cell line (CCF-STTG1), were selected to verify the ER stress in vitro. The expression of BIP, phospho-elF2α, phospho-IRE1, and ATF6 were analyzed through western blot and the nuclear localization of XBP1s was performed by confocal immunofluorescence microscopy. RT-qPCR was also used to quantify the mRNA level of the UPR downstream genes in vitro and in vivo. RESULTS: ZIKV infection significantly upregulated the expression of ER stress markers in vitro and in vivo. Phospho-IRE1 and XBP1 expression significantly increased in the cerebellum and mesocephalon, while ATF6 expression significantly increased in the mesocephalon. ATF6n and XBP1s were translocated into the cell nucleus. The levels of BIP, ATF6, phospho-elf2α, and spliced xbp1 also significantly increased in vitro. Furthermore, the downstream genes of UPR were detected to investigate the regulating model of the UPR during ZIKV infection in vitro and in vivo. The transcriptional levels of atf4, gadd34, chop, and edem-1 in vivo and that of gadd34 and chop in vitro significantly increased. CONCLUSION: Findings in this study demonstrated that ZIKV infection activates ER stress in neural cells. The results offer clues to further study the mechanism of neuropathogenesis caused by ZIKV infection

    Spin Dependence of Interfacial Reflection Phase Shift at Cu/Co Interface

    Full text link
    The spin dependent reflection at the interface is the key element to understand the spin transport. By completely solving the scattering problem based on first principles method, we obtained the spin resolved reflectivity spectra. The comparison of our theoretical results with experiment is good in a large energy scale from Fermi level to energy above vacuum level. It is found that interfacial distortion is crucial for understanding the spin dependence of the phase gain at the Cu∣|Co interface. Near the Fermi level, image state plays an important role to the phase accumulation in the copper film.Comment: 6 papges, 3 figures, accepted by Physical Review

    Formulation Design and In vitro Evaluation of Berberine- Loaded Self-Nanoemulsifying Drug Delivery System

    Get PDF
    Purpose: To improve the oral bioavailability of berberine using a new self-nanoemulsifying drug delivery system (SNEDDS).Methods: Berberine SNEDDS was designed using solubility studies and phase diagram construction. A series of tests were carried out to study the effect of oil content, dilution, and drug loading on particle size. The morphology of the nanoemulsion was examined with a transmission electron microscope. Subsequently, the optimized berberine SNEDDS was investigated for in vitro release and compared with two marketed products (Xiaowei capsules and Beike tablets)Results: The optimized formulation, composed of berberine of 6.0 %, castor oil of 18.8 %, Tween 20 of 37.6 %, and glycerol of 37.6 %, gave a mean particle size of approximately 60 nm, and was not affected by dilution. The optimized formulation released 90 % berberine in 20 min, while the reference products, Xiaowei capsules and Beike tablets, required 2 h to release 90 % of berberine.Conclusion: The optimized formulation of SNEDDS is a potential alternative oral dosage form for improving oral absorption of berberine.Keywords: Berberine, Pseudoternary phase diagram, Self-nanoemulsifying, SNEDDS, Drug releas

    High-resolution lightfield photography using two masks

    Get PDF
    A major theme of computational photography is the acquisition of lightfield, which opens up new imaging capabilities, such as focusing after image capture. However, to capture the lightfield, one normally has to sacrifice significant spatial resolution as compared to normal imaging for a fixed sensor size. In this work, we present a new design for lightfield acquisition, which allows for the capture of a higher resolution lightfield by using two attenuation masks. They are positioned at the aperture stop and the optical path respectively, so that the four-dimensional (4D) lightfield spectrum is encoded and sampled by a two-dimensional (2D) camera sensor in a single snapshot. Then, during post-processing, by exploiting the coherence embedded in a lightfield, we can retrieve the desired 4D lightfield with a higher resolution using inverse imaging. The performance of our proposed method is demonstrated with simulations based on actual lightfield datasets. © 2012 Optical Society of America.published_or_final_versio
    • …
    corecore