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Abstract: A major theme of computational photography is the acquisition
of lightfield, which opens up new imaging capabilities, such as focusing
after image capture. However, to capture the lightfield, one normally has
to sacrifice significant spatial resolution as compared to normal imaging
for a fixed sensor size. In this work, we present a new design for lightfield
acquisition, which allows for the capture of a higher resolution lightfield by
using two attenuation masks. They are positioned at the aperture stop and
the optical path respectively, so that the four-dimensional (4D) lightfield
spectrum is encoded and sampled by a two-dimensional (2D) camera sensor
in a single snapshot. Then, during post-processing, by exploiting the coher-
ence embedded in a lightfield, we can retrieve the desired 4D lightfield with
a higher resolution using inverse imaging. The performance of our proposed
method is demonstrated with simulations based on actual lightfield datasets.
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1. Introduction

Advances in computational imaging suggest that we can capture more information than a single
two-dimensional (2D) projection of a three-dimensional (3D) scene. Although the acquired pic-
ture in this manner may not be visually pleasing, via computational methods in post-processing,
it can yield data that could not be obtained with the traditional methods [1–5]. In this paper,
we focus on the camera design for computational photography, which allows us to capture the
“lightfield”. This is a term commonly used in the computer graphics literature [6], but is not a
“field” in the wave optics sense [7]; instead, it is a collection of light rays in geometric optics,
which takes into account not only the geometrical position of the rays but also their directions.

Generally, the radiance along all the rays in a region of 3D space is mathematically charac-
terized by a five-dimensional (5D) plenoptic function [8],i.e., three coordinates for the position
and two angles for the direction. In free space, as the radiance does not change along a line un-
less it is occluded, such a 5D representation may be reduced to four-dimensional (4D), which
is called the “lightfield” [6] or “lumigraph” [9]. With a lightfield, we can reconstruct, or render,
various observations of the scene. For example, we can manipulate viewpoints and perform
refocusing via ray-tracing techniques.

There are two main approaches to capturing lightfields. The first one is to sample each indi-
vidual light ray directly. An early example is integral photography [10], which gathers multiple
images from different perspectives by placing an array of microlenses directly before the sensor.
This is optically similar to a camera array system [11]. More recently, Adelson and Wang [12],
and Ng et al. [13], develop what they called plenoptic cameras. In the latter, an additional
main lens is placed in front of the microlens array. Since the microlenses are located at the
focal plane of this additional lens, the converging rays are separated and finally recorded by
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the sensor behind the microlens array. A second approach is to acquire the data in the Fourier
domain.Veeraraghavan et al. developed the dappled photography [14], where an attenuation
mask is added to a regular camera. Its working principle will be discussed in more detail in
Sections 2.1 and 2.2. After that, Agrawal et al. extend this design to the problem of capturing
useful subsets of time-varying 4D lightfield in a single snapshot [15]. This “reinterpretable”
imaging system adopts a design of a time-varying mask in the pupil plane and a static mask
placed near the sensor, providing a variable resolution tradeoff among the spatial, angular and
temporal dimensions.

Nevertheless, a common issue for different lightfield camera systems is that the spatial res-
olution is traded for angular information (for both angular and temporal information in [15])
because the limited sensor elements have to be allocated to all these dimensions [16, 17]. For
instance, to acquire a lightfield of 144 views on a sensor of size 3072× 1536, a twelvefold
reduction in each spatial dimension means that the maximum resolution achievable is only
256×128. There have been attempts to overcome this tradeoff, but they come at the expense of
other aspects. For example, the camera array system [11] can gain the 4D radiance information
with a high resolution (i.e., full sensor size of each camera) for each perspective, but the sys-
tem is also known for its large size. This eventually limits its practical use. Alternatively, in a
method known as programmable aperture photography [18], we need many image captures to
attain the required angular resolution. This results in a long acquisition time, which is not desir-
able in many practical applications. In [19], Lumsdaine and Georgiev depict a new design of a
plenoptic camera, called the focused plenoptic camera, where the microlens array is positioned
before or behind the focal plane of the main lens. This modification samples the lightfield in a
way that allows for a higher spatial resolution. However, at the same time, the angular resolu-
tion is decreased. Besides, the low angular resolution also introduces some unwanted aliasing
artifacts.

In this paper, we present a camera system that collects the 4D lightfield within a single expo-
sure. With two attenuating masks separately placed at the aperture plane and the optical path of
the camera, we can encode the lightfield spectrum in the Fourier domain, and then selectively
sub-sample it. We show that this economical and easily adjustable design can overcome various
limitations found in other lightfield acquisition systems.

2. A lightfield camera with two masks

2.1. Lightfield mapping via mask-based multiplexing

We explain the mapping of a lightfield with mask-based multiplexing. In geometrical optics, we
describe light propagation in terms of rays, which together form a lightfield [6]. We describe the
light rays by their intersections with two parallel planes as shown in Fig. 1,i.e., a first coordinate
pair u = {u,v} (at theu-plane) and a second coordinate pairs= {s,t} (at thes-plane) [6]. The
lightfield is thenℓ(u,v,s,t), which we abbreviate asℓ(u,s) in the rest of this paper.

Using this two-plane parametrization, we can analyze a conventional camera fitted with a
mask between theu-plane and thes-plane. We depict such a camera in Fig. 2. Theu-plane is
taken to be at the aperture, while thes-plane at the sensor. They are separated by a distanced,
while the mask is placed at a distancez in front of the sensor, wherez≤ d. Let m(u,s) be the
attenuation on a lightfield produced by the mask. The lightfield measured behind the mask is
thenℓo(u,s), given by

ℓo(u,s) =ℓ(u,s)m(u,s). (1)

If we can captureℓo(u,s), we can retrieveℓ(u,s)sincem(u,s) is known.
In fact,m(u,s) is completely determined by the 2D patternc(x,y) printed on the mask when

the distanced is known. We denote the mask plane as thex-plane, withx = {x,y}. With refer-
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Fig. 1. The two-plane parametrization of a 4D lightfield.
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Fig. 2. Schematic diagram of a regular camera, with an attenuation mask placed inside it.

ence to Fig. 2, because△ABCand△ADE are similar triangles, we have

BC
DE

=
AB
AD

⇔
x−u
s−u

=
d−z

d
. (2)

Basedon Eq. (2), we havex = (1−z/d)s+(z/d)u. But sinceu = {u,v} ands= {s,t},

x =
(

1−
z
d

)

s+
z
d

u. (3)

Thus,m(u,s)can be expressed as

m(u,s) =c
[(

1−
z
d

)

s+
z
d

u
]

. (4)

In reality, however, we seldom directly capture the lightfieldℓo(u,s). Instead, it is instructive
to consider the “lightfield-frequency” domain, which is the 4D Fourier transform applied to the
lightfield in Eq. (1). Usingfu andfs to denote the lightfield-frequency variables, we have

Lo(fu, fs) = L (fu, fs)∗M(fu, fs), (5)

whereLo(fu, fs), L (fu, fs) andM(fu, fs) are the respective Fourier transforms ofℓo(u,s),ℓ(u,s)
andm(u,s), and∗ denotes the 4D convolution operation. Furthermore, we can expressM(fu, fs)
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as

M(fu, fs) =

∫ ∞

−∞

∫ ∞

−∞
c
[(

1−
z
d

)

s+
z
d

u
]

exp[−j2π(fu ·u+ fs ·s)] du ds

=
∫ ∞

−∞

{

∫ ∞

−∞
c
[(

1−
z
d

)

s+
z
d

u
]

exp(−j2πfs ·s) ds
}

exp(−j2πfu ·u) du. (6)

Clearly, the positioning of the mask (i.e., the value ofz) affects the lightfieldℓo(u,s). This effect
is explained in further details as follows.

1. Generally, the mask is between the aperture and the sensor, so 0< z< d. According to
Eq. (6), the inner integration computes the Fourier transform over the dimension ofswith
some shift and scaling,i.e. [20],

M(fu, fs) =
d

d−z

∫ ∞

−∞

{

C

(

d
d−z

fs

)

exp

[

j2π
(

z
d−z

fs

)

·u
]}

exp(−j2πfu ·u) du

=
d

d−z
C

(

d
d−z

fs

)

δ
(

fu −
z

d−z
fs

)

, (7)

whereC(·) representsthe 2D Fourier transform ofc(·). This means that the modulation
caused by the mask in the lightfield-frequency domain happens along an inclined 2D
plane, wherefu −

z
d−zfs = 0. Its inclination angleα, if we plot fs versusfu, is given by

α = arctan
z

d−z
. (8)

2. Alternatively, the mask can be placed exactly at the aperture, wherez= d. All the rays
with the same location in theu-plane are attenuated equally by the mask. Substitutez= d
into Eq. (6), then

M(fu, fs) = C(fu)δ (fs). (9)

Thus, in lightfield-frequency domain, the corresponding convolution only affects the
lightfield spectrum along thefu axis (wherefs = 0). This observation is critical to our
design, as we will explain next.

2.2. Lightfield capture and image reconstruction

The sensor at thes-plane cannot capture the full 4D lightfieldℓo(u,s) as given in Eq. (1).
Instead, all rays with the same(s,t) but different(u,v)are collected (i.e., integrated together) by
the same photodetector. In the lightfield-frequency domain, this means the sensor only obtains
data atfu = 0, or along thefs axis.

Ref. [14] however provides a strategy to capture the 4D lightfield using a normal sensor,
which we briefly review here. This will form the basis of our computational photography archi-
tecture which makes use of two masks. Assume thatc(x) is the sum of a series of cosine waves
of equal amplitude;C(fx) is then an impulse train with even symmetry, which causes modula-
tion along a slanted plane. Specifically, Eq. (5) suggests thatLo(fu, fs) contains replications of
L (fu, fs) along a slanted plane at angleα given by Eq. (8). This is shown in Fig. 3. For ease
of explanations, we depict the lightfield spectrum as one consisting of several sections along
the fu axis, each of which is called an angular spectral slice. By adjustingα and the distance
between each consecutive replications of the lightfield spectrum along the slanted plane, we
can position all the sections along thefs axis. Therefore, the 2D slice of data collected by the
sensor still contains all the information about the 4D lightfield.
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Fig. 3. The modulation in the lightfield-frequency domain.
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Fig. 4. Our proposed lightfield camera, with two attenuation masks respectively placed at
the aperture stop and the optical path in the camera.

The tradeoff with this mode of capture is that the slice in Fig. 3 needs to be much longer than
what would be needed for conventional photography; therefore, many more samples are needed
to achieve the same 2D resolution for one reconstructed picture. Put another way, assume the
overall number of pixels isq. Then, to resolven different views, we only assignq/nof the pixels
to sample each angular spectral slice, compared with using allq pixels for a single picture
in conventional photography. This ultimately results in a loss of the spatial resolution with a
scaling of 1/n. Our design of a lightfield camera seeks to ameliorate this problem by showing
that when each angular spectral slice can contain more information than merely one perspective
or view, fewer replicas of the lightfield spectrum are needed. This means that effectively the
sensor slice is shortened, and as a result a higher resolution lightfield can be obtained with a
fixed sensor size.

2.3. Lightfield capture with a double-mask design

We propose a lightfield camera as shown in Fig. 4. We assume that the lightfield spectrum is
bandlimited,i.e., L (fu, fs) = 0 for |fu| ≥ Bu/2 or |fs| ≥ Bs/2. This is reasonable because the
optics imposes a cutoff in the optical transfer function in thefs axis. As forfu, Ref. [21] shows
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Fig. 5. The corresponding lightfield-frequency domain operations in our double-mask light-
field camera. (The asterisk pattern in the figure denotes the convolution.)

that the corresponding bandwidth is basically determined by the depth range of a scene.
We analyze the working principle of this camera by considering the operations in the

lightfield-frequency domain as shown in Fig. 5. After passing through the first attenuation mask
located at the aperture stop, the incoming bandwidth-limited lightfield is convolved with the
mask spectrum along thefu axis. If the mask frequency response is a series of impulses, the
lightfield spectrum is replicated along thefu axis, causing the angular spectral slices to overlay
on each other. This is the lightfield spectrum encoding. Because of the second mask, the en-
coded lightfield spectrum is then replicated along a slanted line. By adjusting the position of
the mask, we can place the desired angular spectral slices along thefs axis. Thereafter, we per-
form the lightfield reconstruction from the 2D slice data collected by the sensor in the fashion
described in Section 2.2.

The analysis in lightfield-frequency domain provides an intuitive knowledge of our design.
However, for the purpose of mask design and lightfield retrieval, we need to explicitly model
the acquisition process. This is expressed as

i(s) =
∫ ∞

−∞
ℓ(u,s)m1(u,s)m2(u,s)du

=

∫ ∞

−∞
ℓ(u,s)c1(u)c2

[(

1−
z
d

)

s+
z
d

u
]

du, (10)

wherei(s) is the 2D picture recorded by the sensor, andm1(u,s)andm2(u,s)are the respective
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attenuation provided by the masks at the aperture stop (c1(x)) and at the camera’s optical path
(c2(x)) shown in Fig. 4. The formula for the masks are given in Eq. (4).

As indicated in Fig. 5, our design is based on a series of operations in the lightfield-frequency
domain. Thus, it is rational to convert the integration of Eq. (10) into a form under the Fourier
bases. After discretizing Eq. (10) and converting it into matrix form, we have

i = F−1M2M1Fℓ = F−1MFℓ = Aℓ, (11)

whereF andF−1 are the matrices consisting of the Fourier basis and its inverse,M1 andM2,
respectively, consist of the coefficients of the Fourier transforms ofc1(x) andc2(x) and the
projection matrixA = F−1MF. Therefore, the image formation of our lightfield camera can be
treated as a linear integration process in the content of geometrical optics as indicated in [22,
23]. More specifically, it is a measuring procedure in the lightfield-frequency domain through
a measurement matrixM = M2M1.

We note that the discretized lightfieldℓ is arranged into a 2D matrix of sizen×m, withn as
the resolution in theu dimension andm as the resolution in thes dimension. AssumeM1 and
M2 are of sizek× p and p×n, respectively. Then,M is a k×n matrix, which means that we
samplek measurements of the coefficients decomposed byn Fourier bases. The size of the final
captured picturei is k×m, meaning we need a sensor withkmpixels. We can compare this with
the design in [14], which forbids overlapping between each replicated spectrum. Consequently,
the matrixM in their case is diagonal (k= n). To achieve a lightfield with the same resolution,
the dappled photography system will neednmpixels. In our design, however, the measurement
matrix is the product of two matricesM2 andM1. This provides us with the means to control
the size of the two dimensions ofM separately. Hence if we can achieve a measurement matrix
M with k < n, fewer pixels will be used to sample the signal. In other words, we can acquire a
higher spatial resolution lightfield using the same number of pixels. As discussed next, we can
then realize a measurement matrix withk < n in our design.

2.4. Design of the two masks

In this section, we describe the pattern design of these two attenuation masks. For clarity, only
the case of 2D lightfield is carried out here, but these conclusions can be easily extended to a
4D lightfield.

The first row of Fig. 5 shows the desired frequency response of the first mask, which is
actually a symmetric impulse train. The interval between each consecutive impulse is equal
to the sampling interval of the lightfield spectrum along thefu axis. Thus, the corresponding
physical mask pattern is the sum of multiple cosine waves with a given amplitude, which in turn
determinesM1 completely. Specifically, assume the first mask has the following the frequency
response,i.e.,

C1( fu) =
n−1

∑
i=−(n−1)

aiδ ( fu− i∆ fu), (12)

wheren is the expected resolution along thefu axis, ai is the amplitude of thei-th impulse
and∆ fu is the sampling interval of the lightfield spectrum along thefu axis, which is equal to
Bu/n with Bu as the bandwidth in thefu dimension. Because the first mask is convolved with
the lightfield spectrum in the lightfield-frequency domain, by converting the convolution into a
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matrix multiplication, we haveM1 equalto
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a0 a1 · · · an−1

a−1 a0 · · · an−2
...

...
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...
a−(n−1) a−(n−2) · · · a0

...
...

...
...























p×n

. (13)

Thus, we have constructed a matrixM1 with a Toeplitz-structured block inside it. Because
of the second mask, onlyk rows ofM1 are selected, so the other ones are marked with ellipses
for simplicity. Note that we can recover the original sparse signal with a high probability from
the limited observations measured by a well-designed Toeplitz-structured matrix [24, 25]. To
satisfy the conditions for such a design, several methods have been recommended. As suggested
in [24], we generateM1 with entriesai , i = 0, . . . ,n−1 drawn independently from a Gaussian
distribution with zero mean. Sinceai is symmetric abouta0, the values ofai , for i = −(n−
1), . . . ,−1, are then known. Eventually, we obtain the physical pattern of the first mask based
on its frequency response in Eq. (12).

As for the second mask placed at the optical path, the second row in Fig. 5 has shown a heuris-
tic example. That is, the frequency response of the second mask is a series of even-symmetric
impulses with equal amplitudes. The number of impulses depends on how many measurements
are required for reconstruction. To avoid aliasing between the adjacent spectrum replicas, the
interval of this impulse train is equal to the lightfield bandwidth in thefs dimension,i.e., Bs.
Specifically, the frequency response of the second mask is given by

C2( fx) =
(k−1)/2

∑
i=−(k−1)/2

δ ( fx− iBs), (14)

wherek is the number of the measurements. Thus the corresponding mask patternc2(x) can be
obtained by computing the inverse Fourier transform of Eq. (14). That is the sum of a series of
cosine waves. As regards its matrix formM2, it depends on the requirement of which measure-
ments will be collected for further reconstruction. So we could realize the function ofM2 by
selecting thek rows ofM1 according to the specific design.

2.5. Lightfield reconstruction

After constructing the two masks, we can then establish the projection matrixA in Eq. (11).
Next we consider the reconstruction of the target 4D lightfield based on the captured 2D picture
i and the projection matrixA. We adopt two different approaches to solve such an inverse
problem. The first is to find its least-norm solution,i.e.,

ℓ⋆ = A†i = AT(AAT)−1i, (15)

whereA† denotes the pseudoinverse ofA. While this is simple and fast, due to the lack of prior
information about the lightfield, the solution is often not sufficiently accurate. To improve the
reconstruction accuracy, we make use of the prior knowledge about a lightfield and impose
regularization in the reconstruction process. One possibility is a sparse regularizer, which is
a 2D total variation (TV) penalty on theu dimension of a lightfield to reflect the inherent
correlations. We also use the 2D TV norm regularization on thes dimension of a lightfield to
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(a)

(b) (c)

(d) (e)

Fig. 6. (a) The pattern of the first mask; (b)-(e) are the pattern parts of the second mask,
respectively in cases of using full, 64%, 36% and 16% sensor size.

preserve the edges and suppress the noise [26–28]. Thus, we reconstruct the lightfield by the
optimization given by

�� = argmin
�

{
1
2
‖A�− i‖2

2 +λ ∑
u
‖iu‖TV +μ ∑

s
‖is‖TV

}
, (16)

where λ and μ are the regularization parameters, iu is a 2D image corresponding to the lightfield
�(u,s) at a fixed point u, and is refers to the lightfield �(u,s) at a fixed point s.

This optimization can be solved via a nonlinear conjugate gradient method combined with
backtracking line search, as adopted in [29].

3. Experimental results

To verify the ability to achieve a high-resolution lightfield, a direct way is to use a fixed number
of pixels to retrieve a lightfield with a higher spatial resolution. Alternatively, one can aim at
obtaining a lightfield of a fixed resolution with fewer pixels, which is the approach we take here.
The following experiments are based on actual lightfield datasets from the Stanford lightfield
archive [30]. For computational considerations, we choose 100 views on a 10× 10 grid and
resize the image to 128×256 pixels.

Figure 6 shows the corresponding mask patterns that are adopted in the experiments. Ac-
cording to Eq. (12) in Section 2.4, the required frequency response of the mask at the aperture
stop is an even-symmetric impulse train of size 19×19 (where n= 10×10 in our experiments).
The corresponding amplitude of these impulses are drawn independently from a Gaussian dis-
tribution with zero mean. The physical pattern shown in Fig. 6(a) is the one we use here. Since
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 8. The reconstructed images at one selected viewpoint by using the least-norm method
(left column) and the proposed method in Section 2.5 (right column): (a) ground truth, (b)
and (c) full size, (d) and (e) 64% sensor size, (f) and (g) 36% sensor size, (h) and (i) 16%
sensor size.
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(c) (d)

Fig. 9. Reconstructions when using 36% sensor size: (a) ground truth; (b) the best quality
that can be achieved by using the traditional lightfield cameras; (c) our reconstruction with
the least-norm method; (d) our reconstruction with the proposed iterative method.

(a) (b)

(c) (d)

Fig. 10. Reconstructions when using 16% sensor size: (a) ground truth; (b) the best quality
that can be achieved by using the traditional lightfield cameras; (c) our reconstruction with
the least-norm method; (d) our reconstruction with the proposed iterative method.
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the mask at the aperture stop is responsible for encoding the lightfield spectrum, we keep this
maskunchanged during our experiments.

For the mask placed at the optical path, its frequency response depends on the specific re-
quirement of the measurement number. For example, for the case of using full sensor size (i.e.,
1280×2560), it is a 10×10 impulse train with equal amplitude based on Eq. (14). Similarly,
we have 8×8 for the case of using 64% sensor size (i.e., 1024×2048), 6×6 for the case of
using 36% sensor size (i.e., 768×1536) and 4×4 for the case of using 16% sensor size (i.e.,
512×1024). Figure 6(b) - 6(e) show the corresponding pattern parts in these different cases.
Notice that since we cannot have negative values in the mask, we need to increase the DC
component so that the values in these masks are nonnegative.

Next, we show the performance of our camera when using different sensor sizes. That is,
we aim to retrieve the original lightfield of the same spatial resolution from the captured sig-
nals by using different physical sensor sizes. Figure 7 shows the captured pictures by using the
proposed lightfield camera with different number of pixels. Figure 8 shows the corresponding
reconstruction images at one selected viewpoint. For the sake of comparison, we use both the
least-norm method in Eq. (15) and our proposed algorithm in Eq. (16) for lightfield reconstruc-
tion. In the case of using full sensor, both methods can yield perfect reconstructions as given in
the ground truth. With a mild reduction in sensor size, the recoveries can still provide us good
details comparable with the ground truth, such as the ones shown in the case of using 64%
sensor size. With further reduction, however, the reconstruction becomes difficult, although the
reconstructed images are still satisfactory with 36% and 16% pixels. Furthermore, in compar-
ison with the reconstructions by using the least-norm method (the left column in Fig. 8), we
can see that our method can preserve more details and provide better artifact control (e.g., the
ringing artifacts around the beans). Nevertheless, we also observe that with significant sensor
size reduction, some of the details in the images are lost and the images are blurry.

Finally, we show that a higher resolution lightfield can be acquired with our proposed system
than that with the conventional lightfield cameras when using the same sensor size. Figure 9
shows the case of using 36% sensor size (i.e., 768×1536). If we use the conventional lightfield
cameras such as the ones in [13,14], the maximum spatial resolution that can be achieved will
be 76×153. From the results shown in Fig. 9, we can see that with our proposed camera the
lightfield can be recovered at a higher spatial resolution. Such a resolution enhancement effect
becomes more prominent in the case of using 16% sensor size (i.e., 512×1024). In this case,
the best quality that can be achieved with the conventional method is 51×102. But by adopting
the proposed camera, we can still reconstruct many details of the scene from the captured data.
See Fig. 10 for details.

4. Conclusions

We show a system that can capture a 4D lightfield with two attenuation masks. Taking advan-
tage of the correlations inherent in the lightfield, we develop a post-processing algorithm to
reconstruct the lightfield from the captured 2D data from the sensor. The experimental results
show that fewer pixels are needed to achieve the same resolution as what one can achieve with
a conventional lightfield camera.
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