43 research outputs found

    Long-term acupuncture treatment has a multi-targeting regulation on multiple brain regions in rats with Alzheimer’s disease : a positron emission tomography study

    No full text
    The acute effect of acupuncture on Alzheimer’s disease, i.e., on brain activation during treatment, has been reported. However, the effect of long-term acupuncture on brain activation in Alzheimer’s disease is unclear. Therefore, in this study, we performed long-term needling at Zusanli (ST36) or a sham point (1.5 mm lateral to ST36) in a rat Alzheimer’s disease model, for 30 minutes, once per day, for 30 days. The rats underwent 18F-fluorodeoxyglucose positron emission tomography scanning. Positron emission tomography images were processed with SPM2. The brain areas activated after needling at ST36 included the left hippocampus, the left orbital cortex, the left infralimbic cortex, the left olfactory cortex, the left cerebellum and the left pons. In the sham-point group, the activated regions were similar to those in the ST36 group. However, the ST36 group showed greater activation in the cerebellum and pons than the sham-point group. These findings suggest that long-term acupuncture treatment has targeted regulatory effects on multiple brain regions in rats with Alzheimer’s disease

    Radiation, soil water content, and temperature effects on carbon cycling in an alpine swamp meadow of the northeastern Qinghai–Tibetan Plateau

    No full text
    Abstract Predicted intensified climate warming will likely alter the ecosystem net carbon (C) uptake of the Qinghai–Tibetan Plateau (QTP). Variations in C sink–source responses to climate warming have been linked to water availability; however, the mechanisms by which net C uptake responds to soil water content in saturated swamp meadow ecosystems remain unclear. To explore how soil moisture and other environmental drivers modulate net C uptake in the QTP, field measurements were conducted using the eddy covariance technique in 2014, 2015, 2017, and 2018. The alpine swamp meadow presented in this study was a persistent and strong C sink of CO₂ (−168.0 ± 62.5 g C m⁻² yr⁻¹, average ± standard deviation) across the entire 4-year study period. A random forest machine-learning analysis suggested that the diurnal and seasonal variations of net ecosystem exchange (NEE) and gross primary productivity (GPP) were regulated by temperature and net radiation. Ecosystem respiration (Re), however, was found mainly regulated by the variability of soil water content (SWC) at different temporal aggregations, followed by temperature, the second contributing driver. We further explored how Re is controlled by nearly saturated soil moisture and temperature comparing two different periods featuring almost identical temperatures and significant differences on SWC and vice versa. Our data suggest that, despite the relatively abundant water supply, periods with a substantial decrease in SWC or increase in temperature produced higher Re and therefore weakened the C sink strength. Our results reveal that nearly saturated soil conditions during the growing seasons can help maintain lower ecosystem respiration rates and thus enhance the overall C sequestration capacity in this alpine swamp meadow. We argue that soil respiration and subsequent ecosystem C sink magnitude in alpine swamp meadows could likely be affected by future changes in soil hydrological conditions caused by permafrost degradation or accelerated thawing–freezing cycling due to climate warming
    corecore