9,436 research outputs found

    Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates

    Get PDF
    Within the t-t'-J model, the electron spectrum and quasiparticle dispersion in doped bilayer cuprates in the normal state are discussed by considering the bilayer interaction. It is shown that the bilayer interaction splits the electron spectrum of doped bilayer cuprates into the bonding and antibonding components around the (π,0)(\pi,0) point. The differentiation between the bonding and antibonding components is essential, which leads to two main flat bands around the (π,0)(\pi,0) point below the Fermi energy. In analogy to the doped single layer cuprates, the lowest energy states in doped bilayer cuprates are located at the (π/2,π/2)(\pi/2,\pi/2) point. Our results also show that the striking behavior of the electronic structure in doped bilayer cuprates is intriguingly related to the bilayer interaction together with strong coupling between the electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and discussions, accepted for publication in Phys. Rev.

    Lagrange formalism of memory circuit elements: classical and quantum formulations

    Full text link
    The general Lagrange-Euler formalism for the three memory circuit elements, namely, memristive, memcapacitive, and meminductive systems, is introduced. In addition, {\it mutual meminductance}, i.e. mutual inductance with a state depending on the past evolution of the system, is defined. The Lagrange-Euler formalism for a general circuit network, the related work-energy theorem, and the generalized Joule's first law are also obtained. Examples of this formalism applied to specific circuits are provided, and the corresponding Hamiltonian and its quantization for the case of non-dissipative elements are discussed. The notion of {\it memory quanta}, the quantum excitations of the memory degrees of freedom, is presented. Specific examples are used to show that the coupling between these quanta and the well-known charge quanta can lead to a splitting of degenerate levels and to other experimentally observable quantum effects

    Harmonic emission from cluster nanoplasmas subject to intense short laser pulses

    Full text link
    Harmonic emission from cluster nanoplasmas subject to short intense infrared laser pulses is studied. In a previous publication [M. Kundu et al., Phys. Rev. A 76, 033201 (2007)] we reported particle-in-cell simulation results showing resonant enhancements of low-order harmonics when the Mie plasma frequency of the ionizing and expanding cluster resonates with the respective harmonic frequency. Simultaneously we found that high-order harmonics were barely present in the spectrum, even at high intensities. The current paper is focused on the analytical modeling of the process. We show that dynamical stochasticity owing to nonlinear resonance inhibits the emission of high order harmonics.Comment: 12 pages, 7 figures, RevTe

    The production rate of the coarse grained Gibbs entropy and the Kolmogorov-Sinai entropy: a real connection ?

    Full text link
    We discuss the connection between the Kolmogorov-Sinai entropy, hKSh_{KS}, and the production rate of the coarse grained Gibbs entropy, rGr_G. Detailed numerical computations show that the (often accepted) identification of the two quantities does not hold in systems with intermittent behavior and/or very different characteristic times and in systems presenting pseudo-chaos. The basic reason of this fact is in the asymptotic (with respect to time) nature of hKSh_{KS}, while rGr_G is a quantity related to short time features of a system.Comment: 8 pages, 5 figures Submitted to PR

    Time-dependent coupled oscillator model for charged particle motion in the presence of a time varyingmagnetic field

    Full text link
    The dynamics of time-dependent coupled oscillator model for the charged particle motion subjected to a time-dependent external magnetic field is investigated. We used canonical transformation approach for the classical treatment of the system, whereas unitary transformation approach is used when managing the system in the framework of quantum mechanics. For both approaches, the original system is transformed to a much more simple system that is the sum of two independent harmonic oscillators which have time-dependent frequencies. We therefore easily identified the wave functions in the transformed system with the help of invariant operator of the system. The full wave functions in the original system is derived from the inverse unitary transformation of the wave functions associated to the transformed system.Comment: 16 page

    Initial Hypersurface Formulation: Hamilton-Jacobi Theory for Strongly Coupled Gravitational Systems

    Get PDF
    Strongly coupled gravitational systems describe Einstein gravity and matter in the limit that Newton's constant G is assumed to be very large. The nonlinear evolution of these systems may be solved analytically in the classical and semiclassical limits by employing a Green function analysis. Using functional methods in a Hamilton-Jacobi setting, one may compute the generating functional (`the phase of the wavefunctional') which satisfies both the energy constraint and the momentum constraint. Previous results are extended to encompass the imposition of an arbitrary initial hypersurface. A Lagrange multiplier in the generating functional restricts the initial fields, and also allows one to formulate the energy constraint on the initial hypersurface. Classical evolution follows as a result of minimizing the generating functional with respect to the initial fields. Examples are given describing Einstein gravity interacting with either a dust field and/or a scalar field. Green functions are explicitly determined for (1) gravity, dust, a scalar field and a cosmological constant and (2) gravity and a scalar field interacting with an exponential potential. This formalism is useful in solving problems of cosmology and of gravitational collapse.Comment: 30 pages Latex (IOP) file with 2 IOP style files, to be published in Classical and Quantum Gravity (1998

    Entanglement Entropy of Fermi Liquids via Multi-dimensional Bosonization

    Full text link
    The logarithmic violations of the area law, i.e. an "area law" with logarithmic correction of the form SLd1logLS \sim L^{d-1} \log L, for entanglement entropy are found in both 1D gapless system and for high dimensional free fermions. The purpose of this work is to show that both violations are of the same origin, and in the presence of Fermi liquid interactions such behavior persists for 2D fermion systems. In this paper we first consider the entanglement entropy of a toy model, namely a set of decoupled 1D chains of free spinless fermions, to relate both violations in an intuitive way. We then use multi-dimensional bosonization to re-derive the formula by Gioev and Klich [Phys. Rev. Lett. 96, 100503 (2006)] for free fermions through a low-energy effective Hamiltonian, and explicitly show the logarithmic corrections to the area law in both cases share the same origin: the discontinuity at the Fermi surface (points). In the presence of Fermi liquid (forward scattering) interactions, the bosonized theory remains quadratic in terms of the original local degrees of freedom, and after regularizing the theory with a mass term we are able to calculate the entanglement entropy perturbatively up to second order in powers of the coupling parameter for a special geometry via the replica trick. We show that these interactions do not change the leading scaling behavior for the entanglement entropy of a Fermi liquid. At higher orders, we argue that this should remain true through a scaling analysis.Comment: 18 pages, accepted version with major updat

    Realism about the Wave Function

    Get PDF
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review and compare several realist interpretations of the wave function. They fall into three categories: ontological interpretations, nomological interpretations, and the \emph{sui generis} interpretation. For simplicity, I will focus on non-relativistic quantum mechanics.Comment: Penultimate version for Philosophy Compas

    Simultaneous Dual Frequency Observations of Giant Pulses from the Crab Pulsar

    Get PDF
    Simultaneous measurements of giant pulses from the Crab pulsar were taken at two widely spaced frequencies using the real-time detection of a giant pulse at 1.4 GHz at the Very Large Array to trigger the observation of that same pulse at 0.6 GHz at a 25-m telescope in Green Bank, WV. Interstellar dispersion of the signals provided the necessary time to communicate the trigger across the country via the Internet. About 70% of the pulses are seen at both 1.4 GHz and 0.6 GHz, implying an emission mechanism bandwidth of at least 0.8 GHz at 1 GHz for pulse structure on time scales of one to ten microseconds. The arrival times at both frequencies display a jitter of 100 microseconds within the window defined by the average main pulse profile and are tightly correlated. This tight correlation places limits on both the emission mechanism and on frequency dependent propagation within the magnetosphere. At 1.4 GHz the giant pulses are resolved into several, closely spaced components. Simultaneous observations at 1.4 GHz and 4.9 GHz show that the component splitting is frequency independent. We conclude that the multiplicity of components is intrinsic to the emission from the pulsar, and reject the hypothesis that this is the result of multiple imaging as the signal propagates through the perturbed thermal plasma in the surrounding nebula. At both 1.4 GHz and 0.6 GHz the pulses are characterized by a fast rise time and an exponential decay time which are correlated. The pulse broadening with its exponential decay form is most likely the result of multipath propagation in intervening ionized gas.Comment: LaTeX, 18 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Bose-Einstein condensation in the presence of a uniform field and a point-like impurity

    Full text link
    The behavior of an ideal DD-dimensional boson gas in the presence of a uniform gravitational field is analyzed. It is explicitly shown that, contrarily to an old standing folklore, the three-dimensional gas does not undergo Bose-Einstein condensation at finite temperature. On the other hand, Bose-Einstein condensation occurs at T0T\neq 0 for D=1,2,3D=1,2,3 if there is a point-like impurity at the bottom of the vessel containing the gas.Comment: 14 pages, REVTEX. Revised version, accepted for publication in Phys. Rev.
    corecore