50 research outputs found

    Repellence and attraction of Apis mellifera foragers by nectar alkaloids

    Get PDF
    Plant secondary metabolites present naturally in nectar, such as alkaloids, may change the behavioural responses of floral visitors and affect pollination. Some studies have shown that nectar containing low concentrations of these secondary metabolites is preferred by honey bee foragers over pure nectar. However, it remains unclear whether this is caused by dependence or addictive behaviour, a simple taste preference, or by other conditions such as self-medication. In our choice experiment, free-flying bees were presented with artificial flowers holding 20% sucrose containing 0.5−50 μg ml−1 of one of the naturally occurring nectar alkaloids - caffeine, nicotine, senecionine, and gelsemine. Nectar uptake was determined by weighing each flower and comparing the weight to that of the control flower. Our experimental design minimized memorizing and marking; despite this, caffeine was significantly preferred at concentrations 0.5−2 μg ml−1 over control nectar; this preference was not observed for other alkaloids. All of the compounds tested were repellent at concentrations above 5 μg ml−1. We confirmed previous reports that bees exhibit a preference for caffeine, and hypothesize that this is not due only to addictive behaviour but is at least partially mediated by taste preference. We observed no significant preference for nicotine or any other alkaloid

    Renal Disease Haemogram and Plasma Biochemistry in Green Iguana

    Full text link

    γ-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis

    Get PDF
    γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity

    Classification of mesic grasslands and their transitions of South Transdanubia (Hungary)

    Get PDF
    Relevés from meadows and pastures of South Transdanubia (Hungary) are evaluated by clustering and ordination methods. The relevé selection focused on the Arrhenatheretalia order but its transitions towards other types were also included. The groups of relevés are delimited and described according to differential, dominant and constant species. Ecological conditions of the groups were compared using indicator values. Nine groups were distinguished, four of them belonging strictly to the order Arrhenatheretalia. Each alliance of Arrhenatheretalia presented in the study area (Cynosurion, Arrhenatherion) was represented by two groups. Groups from these two alliances are separated along a light gradient, while groups of the same alliance differ in nutrient values. Within Cynosurion, the nutrient-poor group cannot be identified unambiguously as any syntaxa previously known from Hungary. The nutrient-rich Cynosurion meadows are similar to Lolio–Cynosuretum, however, they show a stronger relationship with wet meadows. Within Arrhenatherion, Pastinaco–Arrhenatheretum is recognised as a hay meadow of nutrient-rich soils. The other meadow type is similar to Filipendulo–Arrhenatheretum, thus raising syntaxonomical problems. There are transitional groups towards semi-dry and wet meadows, one dynamic phase and one outlier group among the other five clusters

    Characterization of solvents containing CyMe4-BTPhen in selected cyclohexanone-based diluents after irradiation by accelerated electrons

    No full text
    Radiation stability of CyMe4-BTPhen was examined in systems with three selected cyclohexanone-based diluents. Accelerated electrons were used as a source of ionizing radiation. The CyMe4-BTPhen radiation degradation identifi cation and characterization of the degradation products were performed by high performance liquid chromatography (HPLC) and mass spectrometry (MS) analyses. Residual concentrations of tested ligand were determined. Moreover, extraction properties of the solvents irradiated at two different doses were compared with the extraction properties of non-irradiated solvents to estimate the influence of the presence of degradation products in the organic phase
    corecore