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Abstract

Background: This report focuses on the adaptive phase I trial design aimed to find the clinically applicable dose
for decitabine maintenance treatment after allogeneic hematopoietic stem cell transplantation in patients with
higher-risk myelodysplastic syndrome and secondary acute myeloid leukemia.

Methods: The first cohort (three patients) was given the same initial daily dose of decitabine (5 mg/m2/day, five
consecutive days with 4-week intervals). In all cohorts, the doses for Cycles 2 to 4 were individualized using
pharmacokinetic-pharmacodynamic modeling and simulations. The goal of dose individualization was to determine the
maximum dose for each patient at which the occurrence of grade 4 (CTC-AE) toxicities for both platelet and neutrophil
counts could be avoided. The initial doses for the following cohorts were also estimated with the data from the previous
cohorts in the same manner.

Results: In all but one patient (14 out of 15), neutrophil count was the dose-limiting factor throughout the cycles. In
cycles where doses were individualized, the median neutrophil nadir observed was 1100/mm3 (grade 2) and grade 4
toxicity occurred in 5.1 % of all cycles (while it occurred in 36.8 % where doses were not individualized). The initial
doses estimated for cohorts 2 to 5 were 4, 5, 5.5, and 5 mg/m2/day, respectively. The median maintenance dose was
7 mg/m2/day.

Conclusions: We determined the acceptable starting dose and individualized the maintenance dose for each patient,
while minimizing the toxicity using the adaptive approach. Currently, 5 mg/m2/day is considered to be the most
appropriate starting dose for the regimen studied.

Trial registration: Clinicaltrials.gov NCT01277484

Keywords: Model-based drug development, Adaptive design, Myelodysplastic syndrome, Population
pharmacokinetics-pharmacodynamics, Phase I clinical trial

Background
DNA methylation is the best-known epigenetic marker
for cancer development [1]. In some hematologic malig-
nancies including myelodysplastic syndrome (MDS),
DNA methylation results not only in increased cell

proliferation but also in silencing of genes which regu-
late growth and differentiation [2]. Based upon those
mechanisms, the use of a DNA hypomethylating agent
(HMA) for hematologic malignancies has been expanded.
Accordingly, clinical researches to optimize HMA therapy
[3, 4] or to explore epigenetic mechanisms for new drug
development have been widely performed [5, 6].
Decitabine (Dacogen®, 5-aza-2′-deoxycytidine) is a

HMA that exerts its antitumor activity by inhibiting DNA
methylation at low doses and by arresting DNA synthesis
at high doses [7, 8]. For several decades, decitabine has
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been one of the most intensely studied anticancer agents
in the field of hematology due to its sophisticated develop-
ment history [9–11], as well as its impressive clinical out-
comes against many hematologic diseases [7, 9, 12–17].
For MDS, the approved indication for decitabine, numer-
ous efforts have been made to optimize the dosing regi-
men according to patient characteristics, including the
regimen evaluated in this study (five consecutive days of
dosing with 4-week interval) [12, 18–22].
Recently, HMA maintenance therapy after allogeneic

hematopoietic stem cell transplantation (allo-HSCT) has
been suggested as a potentially attractive approach to
minimize relapse and to improve graft survival [23–25].
Several studies on azacitidine (Vidaza®, 5-azacytidine)
reported low toxicity, along with its potential to increase
the number of hematopoietic stem cells [11, 26–29];
thus, similar approaches using decitabine were initiated
[22]. In this context, we designed and performed a phase
I study that aimed to find a clinically applicable dosage
regimen for decitabine maintenance treatment after allo-
HSCT in patients with higher-risk MDS and secondary
acute myeloid leukemia (AML).
Our study design incorporated two major consider-

ations: (1) the purpose of the maintenance therapy was
to maintain disease-free status in the patient while sim-
ultaneously preserving graft function, and (2) the dosage
regimen should be determined using the smallest num-
ber of patients possible. Considering these aspects, with-
out a confident estimation of the appropriate starting
dose, traditional fixed-dose escalation schemes [30] were
considered inappropriate for the following reasons: (1)
fatal toxicity (e.g., graft failure) might occur in some sub-
jects, (2) the study might need too many patients to find
the optimal dose [31], and (3) dose differences between
cohorts might be too large or small. Thus, we introduced
an adaptive dose individualization design based upon
pharmacokinetic (PK)-pharmacodynamic (PD) modeling
for the neutropenia and thrombocytopenia caused by
decitabine.
Dose individualization of anticancer drugs using PK-

PD modeling has been theoretically proposed using sim-
ulated data [32, 33]; however, our report is the first to
implement dose individualization using PK-PD modeling
in patients in a phase I clinical trial. We endeavored to

titrate the appropriate dose for each patient, with the
goal of identifying the highest possible dose that did not
result in severe hematologic toxicities. We also antici-
pated that this approach would more quickly accomplish
the study’s objectives and avoid having to test several
cohorts for the dose escalation. This report focuses on
the study design, the PK-PD model development for
hematologic toxicities caused by decitabine, and the use-
fulness of our adaptive approach as it applies to subject
safety.

Results
Patient characteristics
Five patients with secondary AML evolving from MDS
and 11 with MDS (9 males, 7 females) were enrolled
(Table 1). All the patients received the myeloablative
condition regimen and peripheral blood stem cells from
the related (n = 6) or unrelated (n = 10) donors. The
engraftment achievement of platelet and neutrophil
counts was confirmed for all patients by an experienced
hematologist upon enrollment. Graft-versus-host dis-
ease (GVHD) prophylaxis was calcineurin inhibitors
(cyclosporine for related and tacrolimus for unrelated
donors) plus short-course methotrexate. Antithymocyte
globulin was given to all patients. Decitabine was
administered at a median of 86 days (range, 56–90 days)
after transplantation. At the time of decitabine treat-
ment, acute (≤ overall grade 2) or chronic GVHD was
observed in nine and one patients, respectively. The
clinical features are given in Table 2.

Patient disposition and dataset
Patient dispositions are detailed in Fig. 1. In cohort 1,
the third patient dropped out of the study without PD
sampling; thus, we substituted with an additional patient,
since PK-PD results from three patients were needed to
obtain the initial dose for cohort 2. Fourteen patients
completed all the study-related procedures until Cycle 4,
and maintenance dose was determined for each patient at
the end of Cycle 4 (Table 2).
For each subject, PK sampling was performed according

to the protocol, and the average number of PD observa-
tions used in individual dose titration (IDT) was 5.76/cycle
for both neutrophils and platelets. Among 58 treatment

Table 1 Patient demographics

Variables Cohort Total

1 2 3 4 5

Age (year) 41.0 ± 17.1 57.0 ± 12.1 55.7 ± 5.8 55.3 ± 11.7 39.7 ± 17.9 49.2 ± 14.4

Sex (male/female) 3/1 2/1 0/3 3/0 1/2 9/7

Height (m) 1.68 ± 0.05 1.65 ± 0.10 1.58 ± 0.00 1.71 ± 0.05 1.65 ± 0.14 1.65 ± 0.08

Weight (kg) 55.4 ± 5.5 65.0 ± 13.1 52.1 ± 1.8 69.4 ± 5.0 60.3 ± 8.6 60.1 ± 9.2

Body surface area (m2) 1.6 ± 0.1 1.7 ± 0.2 1.5 ± 0.0 1.8 ± 0.1 1.7 ± 0.2 1.7 ± 0.2
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cycles of 15 patients, the doses for Cycles 2 to 4 (a total of
39 cycles) were determined through PK-PD model-based
adaptive dose individualization. Cycle 2 doses in four
patients were clinically determined for the following rea-
sons: no significant blood cell count decrease after
cycle 1 (subjects 8 and 10) and not enough time for
PK-PD modeling and IDT from sudden changes in visit
schedules for Cycle 2 dosing (subjects 11 and 12). The
actual dosing interval was 34.5 ± 8.7 days (mean ± SD).

Estimated doses and safety outcomes
In all but one patient (14 out of 15), the absolute neutro-
phil count (ANC) was the dose-limiting factor through-
out all cycles. During the cycles in which IDT was
performed, the median ANC nadir observed was 1100/
mm3 (range, 300/mm3 to 2680/mm3). The maintenance
dose determined with four cycle data was higher than
the initial doses in 10 out of the 15 patients. The initial
doses (Cycle 1 doses) estimated by cohort dose estima-
tion (CDE) were 4, 5, 5.5, and 5 mg/m2/day for cohorts
2, 3, 4, and 5, respectively. The median individual main-
tenance dose of decitabine was 7 mg/m2/day (Table 2).
Maintenance doses for the patients with Cycle 1 data
inadequate for PK-PD modeling could be estimated
using three cycle data (Cycles 2, 3, and 4) with accept-
able model fits.

A total of nine dose-limiting toxicities (DLT, platelet
count for one case and absolute neutrophil count for
eight cases) were observed. Among these toxicities, seven
cases occurred in non-IDT cycles (six in Cycle 1 and one
in Cycle 2 with clinically determined doses). In the
observed toxicities, 36.8 % of the non-IDT cycles (7 out of
19 cycles) showed dose-limiting toxicities, which was an
approximately seven times higher occurrence rate than
that observed in the IDT cycles (5.1 %, 2 out of 39 cycles).

Overall mixed-effect PK-PD analysis
A total of 95 PK observations and 622 PD observations
(311 for ANC and 311 for platelet count, PC) were used
in the overall mixed-effect PK-PD analysis. The one
patient whose dose-limiting factor was PC was excluded
from this analysis, whose disease entity was considered
not to be similar to others, as she suffered from immune
thrombocytopenia after transplantation and was man-
aged with steroids. Among the data, 6.9 % (4 out of
58 cycles) was obtained from the cycles where IDT was
not applied.
A two-compartment model was found to best describe

the PK data. The between-subject variability (BSV) for
CL (clearance from the central compartment) was the
only random effect which could be estimated, except for
the proportional residual error. The basic structure of
the PD model was identical to that used for IDT and

Table 2 Patient characteristics and doses given in each subject, cohort, and cycle

Cohort Subject
number

Sex/
age

WHO
diagnosis

Donor GVHD gradea Cycle (mg/m2/day for 5 days)

Acute Chronic 1 2 3 4

1 1 F/19 RAEB-2 MSD 0 0 5b,c 1.5 1.5 1.5

2 M/36 AML MSD 0 0 5b 6 5.5 6

3 M/60 RAEB-2 MUD 1 0 5 – – –

4 M/48 AML MSD 0 0 5b,c 1.5 2.5 3

2 5 M/64 RAEB-2 PMUD 1 0 4b 4 5.5 7

6 F/43 RAEB-2 MSD 0 0 4b 7 8 12

7 M/64 AML MSD 0 0 4b 6 5.5 5.5

3 8 F/51 RAEB-2 MUD 1 0 5b 7.5b,c 7.5c 7

9 F/59 RAEB-1 MUD 2 0 5b,c 3.5 4 4.5

10 F/36 RAEB-2 MUD 1 0 5b 6b 8.5 9

4 11 M/64 RAEB-2 MSD 2 0 5.5b 2b – –

12 M/60 RAEB-2 MSD 0 Mild 5.5b,c 4.5b 7 8

13 M/41 RAEB-2 MSD 0 0 5.5b,c 3 5 8

5 14 M/49 AML MUD 2 0 5b 1.5 2.5 3

15 F/50 AML MSD 2 0 5b,c 4 6 9

16 F/49 RAEB-2 MSD 2 0 5b 7.5 8 11c

GVHD graft-versus-host disease, RAEB refractory anemia with excess blast, MSD matched sibling donor, PMUD partially matched unrelated donor, MUD matched
unrelated donor
aAssessed at the time of decitabine initiation
bIndividual dose titration (IDT) by the PK-PD model was not applied
cThe cycles where grade 4 toxicities occurred
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CDE for both PC and ANC (transit compartment model
with feedback mechanism):

dA 1ð Þ
dt

¼ ktr⋅ A 1ð Þ⋅ 1−SLOPE⋅Cð Þ⋅ BASE=A 5ð Þð ÞGAMMA−1
n o

dA 2ð Þ
dt

¼ ktr⋅ A 1ð Þ−A 2ð Þð Þ
dA 3ð Þ
dt

¼ ktr⋅ A 2ð Þ−A 3ð Þð Þ
dA 4ð Þ
dt

¼ ktr⋅ A 3ð Þ−A 4ð Þð Þ
dA 5ð Þ
dt

¼ ktr⋅ A 4ð Þ−A 5ð Þð Þ

where A(N) is the cell count in the Nth compartment
and C is the plasma decitabine concentration. A detailed
description for the parameters is presented in Table 3.
BASE is a parameter indicating the level of cell count
maintained at baseline or at the period without drug
effect. For platelets, an asymptotic structure describing
gradual cell count increase over cycles improved the
model significantly, and thus the following structure
substituted the simple BASE parameter:

BASEp þ IMP 1 − e−IMK�TIME
� �

where IMP is the empirical value of the maximum PC
recovery expected, IMK is the rate constant for asymp-
totic PC recovery, and TIME is the time from the initi-
ation of decitabine treatment.
No meaningful covariate was found in either the

patient demographic or clinical variables. The parameter

descriptions and estimates are given in Table 3. Simu-
lated time courses of ANC changes, under the mainten-
ance dosage of 5 mg/m2/day for four treatment cycles,
are presented in Fig. 2.

Clinical course and non-hematological events
During four cycles of the dose-finding phase of this
study, one patient (subject 3) died of pneumonia (protocol
violation) while the other two (subject 1 and subject 11)
also suffered from pneumonia but fully recovered. One of
the three cases developed decitabine-induced neutropenia
(subject 11, withdrawn). Aggravation of existing acute or
chronic GVHD was not observed, while chronic GVHD
was diagnosed in two patients (one in mild and the other
in moderate form). Herpes zoster was a complication in
three patients.

Discussion
We succeeded in administering the maximum dose
allowed for each patient, with minimized toxicity. The
dose for each cycle was determined based upon the
observed cell counts in the previous cycle(s) which are
the ultimate outcome of patient characteristics and drug
effect. Thus, the dose can be considered as a reflection
of the vulnerability of the graft, the sensitivity to decita-
bine, and any possible drug interactions affecting cell
counts. This method meant that using a large number of
cohorts, as typically required in the traditional dose
escalation scheme, could be avoided. Moreover, the
doses of four patients were reduced from their initial
doses because of their relatively vulnerable PD charac-
teristics. The treatment of these patients might have
been discontinued if a traditional, fixed-dose design had
been used. Most importantly, our study design showed
the significant advantage that all dose individualization
steps were accomplished with a favorable toxicity profile,
judging from the proportion of cycles that exhibited
grade 4 toxicities. When IDT was applied, the propor-
tion of cycles exhibiting grade 4 toxicities dropped to ap-
proximately one-seventh the level (36.8 versus 5.1 %)
compared with the non-IDT cycles. Thus, model-based
dose individualization can be a useful option in early-
phase clinical trial designs, in particular when the initial
dose cannot be set with sufficient confidence.
The PK properties of decitabine in Korean patients

obtained here are similar to those in previous studies.
Liu et al. [34] and Cashen et al. [35] reported that the
PK properties of decitabine could be well described with
a two-compartment model. The distributional characteris-
tics from these two studies could be indirectly compared
using the maximum concentration (Cmax) predicted upon
the completion of decitabine infusion. From previous re-
ports, the maximum concentration of decitabine was
within the range of 60–70 ng/mL, which was obtained

Fig. 1 Patient disposition
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approximately 1 h after initiation of infusion, when decita-
bine was administered at a rate of 5 mg/m2/h (3-h infusion
of a 15 mg/m2 dose) [35, 36]. This observation is consistent
with our finding that the predicted Cmax after 1-h infusion
of 5 mg/m2 was 66.0 ng/mL. In addition, the average ter-
minal half-life was also similar (0.31 h in this study); thus,
the decitabine concentration is predicted to drop below 5 %
of Cmax within 1.5–2 h after the completion of infusion.
The baseline cell count increase over cycles was mod-

eled for platelet level. This was a consistent finding to the
results from previous reports regarding the contribution
of decitabine to cell proliferation [37–41]. For neutrophil
counts, doses estimated by neutrophil count nadirs were
gradually escalated over cycles until reaching the

maintenance dose in ten patients while baseline cell count
increase was not meaningful. Gradual deflation in the
width of the prediction interval for ANC, resulting from
improved precision of the model along with increased
data points obtained throughout the cycles, seems to be
one possible explanation. Dose escalation from this pre-
diction interval deflation lowers the predicted median of
course while maintaining the lower 25 % prediction inter-
val above 500/mm3 (grade 4 toxicity).
We also found it necessary to modify the interval

between cycles that was initially planned as 4 weeks in
this study. Although both PC and ANC were recovered
to the baseline after decitabine dosing, our PK-PD model
predicted that the time to nadir was 3.5 weeks and that

Table 3 Final parameter estimates and bootstrap outcomes

Parameter Unit Description Population typical value Between-subject variability

Estimate Bootstrap median (95 % CI) Estimate
(as CV%)

Bootstrap
median (95 % CI)

Pharmacokinetic
parameters

CL L/h·m2 Clearance 87.8 88.3 (72.2–108) 21.4 20.5 (13.0–26.8)

Vc L/m2 Volume of central compartment 18.5 18.2 (14.2–23.5) NE NE

Vp L/m2 Volume of peripheral compartment 22.9 21.9 (15.7–46.1) NE NE

Q L/h·m2 Intercompartmental clearance 13.1 13.3 (10.0–19.6) NE NE

Pharmacodynamic
parameters for platelet

ktr,P h−1 Rate constant of inter-compartmental
platelet movement

0.0244 0.0246 (0.0236–0.0254) NE NE

SLOPEP – Drug effect on platelet count 0.0656 0.0676 (0.0539–0.0930) 25.7 20.8 (1.30–56.0)

BASEP /mm3 Baseline platelet count 49,200 53,700 (36,100–95,800) 105 78.3 (38.3–110)

GAMMAP – Shape factor for platelet count
fluctuation

0.304 0.299 (0.264–0.325) NE NE

IMP Maximum degree of platelet count
recovery expected

55000 58700 (24200 – 98300) 78.3 72.9 (19.5 – 150)

IMK Rate constant for asymptotic platelet
count recovery

0.000530 0.000513 (0.000213–0.000691) NE NE

Pharmacodynamic
parameters for neutrophil

ktr,N h−1 Rate constant of inter-compartmental
neutrophil movement

0.0132 0.0133 (0.0120–0.0139) NE NE

SLOPEN – Drug effect on neutrophil count 0.263 0.237 (0.114–0.363) 57.5 58.1 (25.8–119)

BASEN /mm3 Baseline neutrophil count 3240 3015 (2110–4140) 43.5 40.6 (27.2–57.6)

GAMMAN – Shape factor for neutrophil count
fluctuation

0.193 0.181 (0.110–0.251) 39.4 36.7 (15.0–65.4)

Residual error

σPK2 – Variance of residual error
(proportional) for PK

0.441 0.436 (0.354–0.505) – –

σPD,P2 Variance of residual error (additive)
for platelet count

25,000 24,300 (18,800–29,600) – –

σPD,N2 Variance of residual error (additive)
for neutrophil count

754 748 (613–839) – –

Proportion of successful convergence: 78.8 % for PK model, 78.0 % for PD model
NE not estimated
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the time to recovery from the influence of the last dose
(ANC >1000/mm3) was approximately 5 weeks for the
ANC. This prediction was consistent with the actual
dosing interval practiced in this study (34.5 days on
average). This finding implies that the 4-week interval
may not be long enough to initiate the next cycle.
Moreover, as illustrated in Fig. 2, the lowest value of ANC
appears to be achieved in the second cycle (6–7 weeks
after treatment initiation). Thus, the initial nadir of ANC
within the first 4-week cycle should not be mistaken for
the lowest ANC value throughout the cycles. This could
also have been a reason for failure in dose determination
if traditional fixed-dose escalation based on the first cycle
nadir was recruited. To optimize the dosing regimen that
may overcome this difficult property of decitabine, an
initial loading dose may be considered before giving main-
tenance doses.

Conclusions
We exemplified the adaptive dose titration approach,
based upon a quantitative exposure-toxicity model, in
this study. This approach seemed most useful, since this
method enabled rapid and precise dose individualization.
The most appropriate initial dose was determined to be
5 mg/m2/day for five consecutive days. Throughout the
course of data analysis, issues such as extending
between-cycle intervals and the use of loading doses
were also raised. Cohort 6 is ongoing for exploration of
the adequacy of the recommended starting dose, and
additional report will be provided after completion of
12 cycles of treatment of all participants.

Methods
Ethics, consent, and permission
This study was designed and conducted in accordance
with the principles of the Declaration of Helsinki and
the good clinical practice guidelines of Korea. The inde-
pendent institutional review board of Seoul St. Mary’s

Hospital approved this study protocol before the initi-
ation of any study-related procedure, and written in-
formed consent was obtained from every subject. The
registration number of this trial at “ClinicalTrials.gov” is
NCT01277484.

Patient eligibility
Patients starting decitabine treatment on days 42–90
after allo-HSCT and meeting the following criteria were
considered eligible: adult aged ≤65; recipient of allo-
HSCT for higher-risk (intermediate 2 or high risk) MDS,
as assessed by the International Prognostic Scoring Sys-
tem [42], and/or AML evolving from MDS; disease
remission with appropriate recoveries of PC >30,000/
mm3 and ANC >1000/mm3, both of which were main-
tained for more than 7 days without any transfusions or
growth factors; absence of grade III/IV acute GVHD;
Eastern Cooperative Oncology Group (ECOG) perform-
ance status of 0 to 2; and no evidence of renal or hepatic
impairment.

Study design
Patients were assigned to cohorts according to their order
of enrollment. A cohort consisted of three patients to
whom the same initial daily dose of decitabine (according
to body surface area) was given. The initial dose for cohort
1 was 5 mg/m2/day. The designated dose was infused
intravenously over 60 min daily for five consecutive days
in each cycle, and the cycle was repeated every 4 weeks up
to Cycle 12. However, dosing was suspended if blood cell
counts insufficiently recovered (PC <30,000/mm3, ANC
<1000/mm3).
For cycles 2 to 4, the dose for each cycle was estimated

using IDT according to PK-PD modeling and simulations
based on blood cell count data accumulated until the
time of dose estimation (just before administration). The
maximum dose at which the occurrence of grade 4
hematologic toxicity (dose-limiting toxicity, PC <25,000/

Fig. 2 Prediction of neutrophil count change when 5 mg/m2 dose is given for five consecutive days with 4-week interval. (From 1000 simulations
using the final PK-PD model)
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mm3 or ANC <500/mm3) could be avoided at the lower
limit of the 50 % prediction interval (25th percentile),
according to 500 simulations, was determined to be the
dose for the next cycle. If the data from the previous
cycle were not adequate for PK-PD modeling (e.g., no
significant blood cell count decreases), the dose was de-
termined based upon the hematologist’s clinical decision
[43]. Only the upper limit of the dose increment was
pre-determined that the next cycle dose cannot exceed
150 % of the previous dose. The dose determined at
Cycle 4 for each individual was maintained thereafter.
The fixed initial dose for each cohort was also estimated

using PK-PD modeling and simulations and was based on
the observations from the previous cohorts (CDE). For co-
hort 2, all of the data obtained before the initiation of
treatment for the first patient in cohort 2 were used for
the initial dose estimation; however, only Cycle 1 data
from the previous cohorts were used for cohort 3, 4, and
5. A new cohort was not initiated before completion of
the first cycle in the last patient of the previous cohort.
A schematic diagram of the overall study design is pre-

sented in Fig. 3.

PK and PD samplings
To determine plasma concentration measurements,
seven whole-blood samples (10 mL each) were collected
using EDTA tubes before dosing and then at 20, 40, 60,
90, 120, and 180 min after initiation of the first dose
infusion of Cycle 1. The samples were immediately
cooled in an ice bath and then centrifuged (3000 rpm,
4 °C, for 10 min) within 1 h from the last sampling time.
After centrifugation, 4 mL of plasma from each sample
was aliquoted into four microtubes (1 mL each), and
10 μL of 10 mg/mL tetrahydrouridine (THU) solution was
added to each microtube. Microtubes were stored at −70
°C until plasma concentration assays.

As PD (toxicity) markers, PCs and ANCs were moni-
tored at scheduled follow-up visits (weekly until Cycle 4
and biweekly thereafter). The procedures for obtaining
PCs and ANCs followed the routine clinical practices for
automated complete blood cell counts at Seoul St.
Mary’s Hospital.

Plasma concentration measurements
Plasma samples were analyzed using liquid chromatography
coupled with tandem mass spectrometry (API 4000,
ABSciex, Canada) based upon a previously reported
method [34]. The lower limit of quantification (LLOQ) was
0.5 ng/mL. The coefficients of correlation (r2) were greater
than 0.9975 in the range of 0.5–100 ng/mL decitabine, as
determined by weighted linear regression (1/concentration).
The precision (% coefficient of variation) and mean intra-
and inter-day accuracies were below 11.57 % and 95.55–
102 %, respectively.

PK-PD modeling and simulation
A mixed-effect analysis was performed using NONMEM
(ver. 7.2, Icon Development Solution, Ellicott City, MD,
USA). During the early phase of this study (e.g., IDT for
cohort 1 and CDE for cohort 2), during which sufficient
PD data to build a robust model were unavailable, we
adopted the PD model proposed by Wallin et al. (2009)
[33]. This model was used in conjunction with the one-
compartment, first-order elimination PK model to build
the initial PK-PD model. Therefore, only the values of the
PK-PD parameters for each individual were estimated at
this step. Then, as data accumulated, we performed
additional modeling to find a better PK-PD model struc-
ture that optimally fits the data. Multi-compartment PK
models, in addition to PD structures such as baseline cell
count increase, were tested in the modeling process.

Fig. 3 Overall schema of the study design. Individual dose titration was performed for the next cycle based on the observations from the previous cycle
(solid straight arrows). Cohort dose estimation was performed to determine initial doses (broken line arrows): (i) for cohort 2, using all data obtained from
cohort 1 until the initiation of cohort 2; (ii) for cohorts 3–5, using only Cycle 1 data of previous subjects. The dose of Cycle 4 was maintained until the
completion of decitabine treatment (Cycle 12) (dotted lines)
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Random effects were also taken into consideration.
The structure to describe the residual error, which refers
to the deviation of each observation from the value
predicted by the PK-PD model, was initially applied to
both IDT and CDE procedures as follows:

DVij ¼ IPREDij⋅ 1þ εprop;ij
� �þ εadd;ij

where DVij is the jth measured concentration or blood
cell count in the ith individual, IPREDij is the model-
predicted value for the corresponding observation (DVij),
and εprop,ij and εadd,ij are the residual variabilities with
means of 0 and variances of σprop

2 and σadd
2 , respectively.

For the CDE step, BSV (ηi) of each PK and PD param-
eter was tested as follows:

Pij ¼ TVPj⋅ exp ηi
� �

where Pij is the jth model parameter in the ith individual
and TVPj is the typical value of the jth model parameter.
The BSV for each parameter was assumed to follow a
normal distribution, with a mean of 0 and differing
values of variance (described using the symbol ωi

2).
The first-order conditional estimation with interaction

option (FOCE-I) method was used whenever applicable.
Model adequacies were assessed based upon goodness-of-
fit plots, likelihood ratio tests (LRT), and model stability
measures (e.g., successful convergence, matrix singularity,
and significant digits). Cutoff criteria incorporated a p
value of 0.05 (e.g., 3.84 for one parameter addition, 5.99
for two) for LRT to determine statistically significant im-
provements in the model.
Covariate analysis was performed for potential covari-

ates, including demographic variables (sex, age, baseline
body weight, and surface area) and clinical variables
(mainly results from laboratory tests). After covariate
screening via visual correlation check-ups and general-
ized additive modeling (GAM) procedures, the variables
selected from the screening were tested as fixed effects
for a certain PK-PD parameter, using LRT and decreases
in BSV for the corresponding parameter.
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