174 research outputs found

    Pattern formation aspects of electrically charged tri-stable media with implications to bulk heterojunction in organic photovoltaics

    Full text link
    A common thread in designing electrochemically-based renewable energy devices comprises materials that exploit nano-scale morphologies, e.g., supercapacitors, batteries, fuel cells, and bulk heterojunction organic photovoltaics. In these devices, however, Coulomb forces often influence the fine nano-details of the morphological structure of active layers leading to a notorious decrease in performance. By focusing on bulk heterojunction organic photovoltaics as a case model, a self-consistent mean-field framework that combines binary (bi-stable) and ternary (tri-stable) morphologies with electrokinetics is presented and analyzed, i.e., undertaking the coupling between the spatiotemporal evolution of the material and charge dynamics along with charge transfer at the device electrodes. Particularly, it is shown that tri-stable composition may stabilize stripe morphology that is ideal bulk heterojuction. Moreover, since the results rely on generic principles they are expected to be applicable to a broad range of electrically charged amphiphilic-type mixtures, such as emulsions, polyelectrolytes, and ionic liquids.Comment: 8 pages, 4 figure

    Decoherence in Disordered Conductors at Low Temperatures, the effect of Soft Local Excitations

    Full text link
    The conduction electrons' dephasing rate, τϕ−1\tau_{\phi}^{-1}, is expected to vanish with the temperature. A very intriguing apparent saturation of this dephasing rate in several systems was recently reported at very low temperatures. The suggestion that this represents dephasing by zero-point fluctuations has generated both theoretical and experimental controversies. We start by proving that the dephasing rate must vanish at the T→0T\to 0 limit, unless a large ground state degeneracy exists. This thermodynamic proof includes most systems of relevance and it is valid for any determination of τϕ\tau_{\phi} from {\em linear} transport measurements. In fact, our experiments demonstrate unequivocally that indeed when strictly linear transport is used, the apparent low-temperature saturation of τϕ\tau_{\phi} is eliminated. However, the conditions to be in the linear transport regime are more strict than hitherto expected. Another novel result of the experiments is that introducing heavy nonmagnetic impurities (gold) in our samples produces, even in linear transport, a shoulder in the dephasing rate at very low temperatures. We then show theoretically that low-lying local defects may produce a relatively large dephasing rate at low temperatures. However, as expected, this rate in fact vanishes when T→0T \to 0, in agreement with our experimental observations.Comment: To appear in the proceedings of the Euresco Conference on Fundamental Problems of Mesoscopic Physics, Granada, September 2003, Kluwe

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors

    Get PDF
    BACKGROUND: The Hedgehog (Hh) signaling pathway regulates a variety of developmental processes, including vasculogenesis, and can also induce the expression of pro-angiogenic factors in fibroblasts postnatally. Misregulation of the Hh pathway has been implicated in a variety of different types of cancer, including pancreatic and small-cell lung cancer. Recently a putative antagonist of the pathway, Hedgehog-interacting protein (HIP), was identified as a Hh binding protein that is also a target of Hh signaling. We sought to clarify possible roles for HIP in angiogenesis and cancer. METHODS: Inhibition of Hh signaling by HIP was assayed by measuring the induction of Ptc-1 mRNA in TM3 cells treated with conditioned medium containing Sonic hedgehog (Shh). Angiogenesis was assayed in vitro by EC tube formation on Matrigel. Expression of HIP mRNA was assayed in cells and tissues by Q-RT-PCR and Western blot. HIP expression in human tumors or mouse xenograft tumors compared to normal tissues was assayed by Q-RT-PCR or hybridization of RNA probes to a cancer profiling array. RESULTS: We show that Hedgehog-interacting protein (HIP) is abundantly expressed in vascular endothelial cells (EC) but at low or undetectable levels in other cell types. Expression of HIP in mouse epithelial cells attenuated their response to Shh, demonstrating that HIP can antagonize Hh signaling when expressed in the responding cell, and supporting the hypothesis that HIP blocks Hh signaling in EC. HIP expression was significantly reduced in tissues undergoing angiogenesis, including PC3 human prostate cancer and A549 human lung cancer xenograft tumors, as well as in EC undergoing tube formation on Matrigel. HIP expression was also decreased in several human tumors of the liver, lung, stomach, colon and rectum when compared to the corresponding normal tissue. CONCLUSION: These results suggest that reduced expression of HIP, a naturally occurring Hh pathway antagonist, in tumor neo-vasculature may contribute to increased Hh signaling within the tumor and possibly promote angiogenesis

    Solving large 0–1 multidimensional knapsack problems by a new simplified binary artificial fish swarm algorithm

    Get PDF
    The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.The authors wish to thank three anonymous referees for their comments and valuable suggestions to improve the paper. The first author acknowledges Ciˆencia 2007 of FCT (Foundation for Science and Technology) Portugal for the fellowship grant C2007-UMINHO-ALGORITMI-04. Financial support from FEDER COMPETE (Operational Programme Thematic Factors of Competitiveness) and FCT under project FCOMP-01-0124-FEDER-022674 is also acknowledged

    Freeze-Drying of Mononuclear Cells Derived from Umbilical Cord Blood Followed by Colony Formation

    Get PDF
    BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs) derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+)-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+)-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4)+/-4.7, 3.49 x 10(4)+/-6 and 6.31 x 10(4)+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively). CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells

    Differential effects of alprazolam and clonazepam on the immune system and blood vessels of non-stressed and stressed adult male albino rats

    Get PDF
    Benzodiazepines belongs to one of the most commonly used anxiolytic and anticonvulsant drugs in the world. Full description of toxic effects on different organs is lacking for nearly all the current benzodiazepines. The aim of the current work was to study the immunologic and vascular changes induced by sub-chronic administration of alprazolam and clonazepam in non-stressed and stressed adult male albino rats. Forty-two adult male albino rats were divided into 6 groups (I): (Ia) Negative control rats, (Ib): Positive control rats received distilled water, (II): Stressed rats, (III): Non-stressed rats received daily oral dose of clonazepam (0.5 mg/kg), (IV): Stressed rats received daily oral dose of clonazepam (0.5 mg/kg), (V): Non-stressed rats received daily oral dose of alprazolam (0.3 mg/kg). (VI): Stressed rats received daily oral dose of alprazolam (0.3 mg/kg). At the end of the 4th week, total leukocyte count (WBCs) and differential count were determined, anti-sheep RBC antibody (Anti-SRBC) titer and interleukin-2 (IL-2) level were assessed, thymus glands, lymph nodes, spleens and abdominal aortae were submitted to histopathological examination. Alprazolam was found to induce a significant increase in neutrophil count and a significant decrease in lymphocytes, anti-SRBC titer and IL-2 level with severe depletion of the splenic, thymal and nodal lymphocytes, accompanied by congestion and eosinophilic vasculitis of all organs tested in comparison to clonazepam treated rats. Stress enhanced the toxic effects. It was concluded that the immune system and blood vessels can be adversely affected to a greater extent by short-term chronic administration of alprazolam than by clonazepam, and these toxic effects are aggravated by stress
    • …
    corecore