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Abstract

In this paper, we investigate localization techniques based on direction-of-arrival (DoA) measurements to estimate the
position of primary users in cognitive radio networks. In the proposed approach, different multi-antenna sensors
estimate the DoA of a primary signal by subspace-based techniques and the target position is estimated from the
available DoA measurements using maximum-likelihood, least-squares, or Stansfield estimators. The resulting
localization performance is evaluated numerically and compared to the Cramr-Rao bound derived under a considered
problem setting. The impact of several system parameters (in particular, number of sensors and number of antennas
per sensors) is thoroughly analyzed and discussed.
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1 Introduction
After more than 10 years of research on cognitive radio
(CR) systems [1,2], a large variety of spectrum sensing
techniques have been proposed (see, e.g., [3-5]). Even
the most sophisticated sensing techniques, however, fail
to provide full protection to primary users (PUs) due
to unavoidable detection delays (depending on the num-
ber of samples needed before a decision is made) and
vulnerability to adverse radio conditions (e.g., fading,
physical obstacles). This conclusion has been recently
acknowledged by the Federal Communications Commis-
sion, whose latest memorandum [6] replaced spectrum
sensing by a database-oriented approach such that PU
positions and times of activity are known in advance.
Knowledge of PU position, in particular, provides

important information for planning and management of a
CR network: it can be exploited to identify ‘spectrumholes
in space’ [7], to implement power control mechanisms,
to design location-aware routing protocols, and to handle
mobility of secondary users (SUs). Also, performance and
reliability of a CR network can be greatly improved if SUs
are able to localize PU signal sources besides detecting
only their presence, like in traditional spectrum sensing.
PU localization capabilities are particularly beneficial for
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cognitive networks operating in spatially diverse radio
environments without databases.
The problem of PU localization in CR networks has

attracted some attention over the past few years. For
example, in [8], a Bayesian approach based on range
and phase measurements is proposed, while a semi-
range method is introduced in [9]. However, range-based
approaches are difficult to apply in practice because the
transmission power of PUs is typically unknown as well
as the propagation channel between PUs and SUs. In
addition, theoretical bounds and approximate maximum-
likelihood algorithms based on received signal strength
measurements were derived in [10], showing that the
achievable estimation accuracy is relatively poor if all
PU transmission parameters are unknown and SUs can
rely only on energy measurements. Therefore, different
approaches need to be explored for application in CR
networks. Time-difference-of-arrival (TDoA) techniques
could be adopted in principle, but they require perfect
synchronization among different SU receivers, which is
not always possible in CR systems. A weighted centroid
approach was proposed in [11], which is suitable for dense
CR networks with many sensors close to the PU position.
In this paper, we consider PU localization based on

direction-of-arrival (DoA) measurements only. As an
advantage compared to range-based localization, the DoA
approach does not require knowledge of PU transmission

© 2013 Penna and Cabric; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208382538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Penna and Cabric EURASIP Journal onWireless Communications and Networking 2013, 2013:107 Page 2 of 14
http://jwcn.eurasipjournals.com/content/2013/1/107

power nor of the propagation channel. This localiza-
tion technique, often referred to as bearings-only target
location, was originally proposed and analyzed in the
navigation literaturea (see, for example, [12-16]).
DoA estimates can be obtained in different ways, for

example, by directional antennas or antenna arrays [17].
This work concentrates on the latter case. Note that arrays
may bemultiple antennas of one receiver or multiple users
cooperating with each other (‘virtual arrays’). In the fol-
lowing, we will use the general term sensor to denote a
sensing unit (single device or virtual array) composed of
a number m > 1 of antennas. Each sensor can estimate
the DoA of the PU signal using classic array processing
techniques [18] such as the multiple signal classification
(MUSIC) algorithm [19].
The contributions of this paper are as follows:

• Derivation of Cramér-Rao bound (CRB) of the
achievable PU localization accuracy as a function of
number of sensors in the network, number of
antennas per sensor, distance of the sensors from the
target, and array orientation with respect to the target.

• Comparison of the above bound with practical
algorithms. It is shown that a combination of MUSIC
and Stansfield algorithm [20] can nearly reach the
CRB in conditions of practical interest for CR
networks.

• Study of the impact of number of sensors and number
of antennas on localization accuracy and numerical
evaluation of the trade-off between these two factors.

We remark that results on the CRB of multi-sensor local-
ization were already derived in the navigation literature
(e.g., [13-16]) and later applied to wireless sensor networks
(see, e.g., the survey paper [17]). However, our work is,
to the best of our knowledge, the first to consider the
joint effect of the number of sensors and the number of
antennas per sensor in a multi-sensor, multi-antenna tar-
get localization system. The results of this paper show the
impact of several parameters (number of sensor elements,
choice of DoA fusion algorithm, array orientation, signal-
to-noise ratio) on the overall localization performance.
Applied to cognitive radio networks, these results provide
important design guidelines for implementing practical
PU localization systems. In this paper, as common in the
localization literature, we adopt the position root mean
square error (RMSE) as performance metric to evaluate
the proposed algorithms. The RMSE has a theoretical jus-
tification, in that it allows for direct comparison with the
CRB. In practical CR applications, an error in the esti-
mation of PU position (expressed by the RMSE) leads to
an erroneous identification of the boundaries of a spec-
trum hole in space and, ultimately, to a reduction of the
throughput for the secondary network or to an increase of

interference for the primary network. While the relation
between PU localization accuracy and PU/SU commu-
nication performance is strongly application-dependent,
minimizing the PU position RMSE translates in gen-
eral into maximizing the efficiency of dynamic spectrum
usage.
The paper is organized as follows: the problem model is

introduced in section 2. In section 3, we briefly state pre-
liminary results on the DoA estimation variance achieved
by the MUSIC algorithm and its corresponding CRB. In
section 4, we address the problem of localization by com-
bining DoA estimates of multiple sensors: we first derive
the CRB of the achievable localization error, highlighting
its dependence on distances and angles between sensors
and target, and then we introduce practical algorithms:
maximum-likelihood (ML), least-squares (LS), and Stans-
field estimators. In section 5, we evaluate by numerical
simulations the performance of the proposed methods for
DoA estimation and localization; we study the impact of
various system parameters and investigate the trade-off
between number of sensors and number of antennas per
sensor. In section 6, we discuss implementation issues of
the proposed method. Section 7 concludes the paper and
summarizes the key results.

2 Mathematical model
Consider a CR network consisting of M sensors with m
antennas each. Let n be the number of PUsb. The position
of the ith PU (target) is denoted by xPi =[ xPi , yPi ]T , and
the position of jth SU (assumed known) is xSj =[ xSj , ySj ]T .
We then define the distance between PU i and sensor j as
follows:

Ri,j � ‖xPi − xSj‖, (1)

where ‖ · ‖ denotes Euclidean norm, and the DoA of the
ith signal with respect to the jth sensor is given by

θi,j � ∠(xPi , xSj) = arctan
(
yPi − ySj
xPi − xSj

)
. (2)

Angles θi,j can be estimated by each sensor j using
subspace-based methods (such as MUSIC), which exploit
the eigendecomposition of the m × m covariance matrix
constructed from N signal samples received at the m
antennas. A generic received signal sample yj(t) ∈ C

m×1

at sensor j and time instant t can be expressed as follows:

yj(t) = A(θ̃j)s(t) + vj(t), t = 1, . . . , N , (3)

where vj(t) ∈ C
m×1 is a Gaussian noise vector with zero

mean and covariance σ 2Im, s(t) ∈ C
n×1 is a vector of

transmitted signal samples with zeromean and covariance
P, and

A(θ̃j) =[ a(θ̃1,j), . . . , a(θ̃n,j)]∈ C
m×n (4)
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is the array response matrix. If primary signals are uncor-
related, P = diag(σ 2

1 , . . . , σ 2
n ). We then define the signal-

to-noise ratio (SNR) of signal i as ρi � σ 2
i /σ 2.

Remark 1. By convention, the DoA support is limited to
one semi-plane, e.g., θi,j ∈[−π/2, π/2] in Equation 2.
This choice is derived from the π-ambiguity of MUSIC and
other subspace-based methods using uniform linear arrays
with isotropic antennas. Such ambiguity can be resolved if
some prior information about PU location is available (e.g.,
a coarse, initial estimate obtained by directional antennas)
so that the reference semi-plane is known in advance.
Remark 2. Angles denoted as θi,j, e.g., in Equation 2, are
defined with respect to the positive direction of the x axis.
The same angles, when denoted as θ̃i,j, e.g, in Equation 3,
are defined with respect to the specific reference system
of the jth sensor. An example is shown in Figure 1. It is
assumed that each SU knows the relative orientation of its
own array; therefore, angles θ̃i,j can be converted into θi,j.

3 DoA estimation error
3.1 Cramér-Rao bound
Given an unbiased estimator of θ̃i,j, the estimation vari-
ance is lower-bounded by the CRB, denoted by σ 2

θi,j ,CR. In
[21], the CRB of DoA estimation is derived as a function of
the SNR ρi, the number of antennasm of sensor j, and the
number of received signal samples N. Under the assump-
tion of uncorrelated signals (diagonal P), the result is as
follows:

σ 2
θi,j ,CR = 1

2Nρih(θ̃i,j)
, (5)

where

h(θ̃i,j) � dH(θ̃i,j)
(
Im − A(AHA)−1AH)

d(θ̃i,j), (6)

and d(θ̃i,j) � da(θ̃i,j)/dθ̃i,j. Note that A is a short-hand
notation for A(θ̃i,j).

Figure 1 Example: relative positions of a sensor (xSj ) and of a
primary user (xPi ). The angle θi,j is defined with respect to a
common reference system (horizontal axis in the figure), while θ̃i,j is
defined with respect to the orthogonal to the positive direction of
the sensor array axis.

Let us now consider the special case of uniform linear
array (ULA) with single signal (n = 1). The ULA array
response is given as follows:

aU(θ̃) =
[
1, eικ sin(θ̃), . . . , eι(m−1)κ sin(̃tθ)

]T
, (7)

where ι is the imaginary unit, κ � 2πD
λ

(with λ = sig-
nal wavelength), D is the spacing between array elements
(which should satisfyD ≤ λ/2 to avoid spatial aliasing). By
convention, θ̃ for ULAs is defined as the angle between the
direction orthogonal to the array line and the impinging
wave. In the presence of a single signal, the matrix A con-
sists of a single column equal to aU(θ̃j) (where index i = 1
can be dropped with no ambiguity). Therefore, Equation 6
reduces to the following:

h(θ̃j) = ‖d(θ̃j)‖2 − 1
‖aU(θ̃j)‖2

∣∣dH(θ̃j)aU(θ̃j)
∣∣2 . (8)

After simple algebraic manipulations (see also Sec. IV-A
of [21]), we find that

‖aU(θ̃j)‖2 = m, (9)

‖d(θ̃j)‖2 = (κ cos θ̃j)
2m(m − 1)(2m − 1)

6
, (10)

dH(θ̃j)aU(θ̃j) = −ικ cos θ̃j
m(m − 1)

2
. (11)

We thus obtain the following:

σ 2
θj ,CR = 1

(κ cos θ̃j)2
6

Nm(m2 − 1)ρ
. (12)

The factor 1/(κ cos θ̃j)2 can be interpreted as the effect
of the orientation of the ULA with respect to the line
between target signal and sensor. The DoA estimation
CRB is minimized when the ULA is perpendicular to such
line (θ̃j = 0), whereas it tends to ∞ when the ULA is
aligned to the same direction of the received signal (θ̃j =
±π/2).

3.2 Practical algorithms
Multi-antenna DoA estimation can be performed by clas-
sic array processing techniques such asMUSIC [19] or one
of its numerous variants (see [18] for a survey).
In [21], it was shown that the signal parameter esti-

mates obtained through MUSIC are, asymptotically in
the sample size, unbiased and Gaussian distributed. Fur-
thermore, the estimation variance achieved by MUSIC
(denoted σ 2

θi,MU) can be expressed as follows:

σ 2
θi,j ,MU = 1

2Nρih(θ̃i,j)

[
1 + [ (AHA)−1]ii

ρi

]
, (13)

which converges to the corresponding CRB σ 2
θi,j ,CR

(Equation 5) as the SNR ρi increases. The symbol [X]ij
represents the element (i, j) of a matrix X.
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Considering again the special case of ULA with single
PU signal, we obtain the following:

σ 2
θj ,MU = 1

(κ cos θ̃j)2
6

Nm(m2 − 1)ρ

(
1 + 1

mρ

)
. (14)

4 Localization error
4.1 Cramér-Rao bound
Assume now that one of the nodes in the network (the
fusion center) gathers M DoA estimates referred to PU i,
obtained by M different sensors in the network. The set
of available observations, properly converted according to
a common reference system (see section 2, Remark 2), is
expressed by the following vector:

θ̂i �[ θ̂i,1, . . . , θ̂i,M]T . (15)

DoA estimates can be written as follows:

θ̂i,j = θi,j + wi,j, (16)

where, recalling that the MUSIC estimator is asymptoti-
cally unbiased and Gaussian distributed (see section 3.2),
error variables wi,j are modeled as zero-mean Gaussian
random variables: wi,j ∼ N (0, σ 2

θi,j
).

The fusion center, then, computes an estimate of the
position of the ith PU based on observations θ̂i. If such
estimate x̂Pi is unbiased, the estimation error covariance
matrix is lower-bounded by the CRB:

	xPi ≥ F−1
i , (17)

where F is the Fisher information matrix (FIM) given by

Fi = −E
θ̂i

[
∂2

∂x2Pi
log p(θ̂i|xPi)

]
. (18)

Thanks to the Gaussian distribution of wi,j, the FIM can
be expressed as follows (cf. [16]):

Fi =
⎡⎢⎣

∑M
j=1

(�yi,j)2

σ 2
θi,j

R4i,j
−∑M

j=1
�xi,j�yi,j
σ 2

θi,j
R4i,j

−∑M
j=1

�xi,j�yi,j
σ 2

θi,j
R4i,j

∑M
j=1

(�xi,j)2

σ 2
θi,j

R4i,j

⎤⎥⎦ (19)

where �xi,j � xPi − xSj and �yi,j � yPi − ySj . We now
observe that �xi,j = Ri,j cos(θi,j) and �yi,j = Ri,j sin(θi,j),
hence

F−1
i = 1

detFi

⎡⎢⎣
∑M

j=1
cos2 θi,j
σ 2

θi,j
R2i,j

∑M
j=1

sin θi,j cos θi,j
σ 2

θi,j
R2i,j∑M

j=1
sin θi,j cos θi,j

σ 2
θi,j

R2i,j

∑M
j=1

sin2 θi,j
σ 2

θi,j
R2i,j

⎤⎥⎦
(20)

with

detFi =
⎛⎝ M∑

j=1

cos2 θi,j

σ 2
θi,j
R2
i,j

⎞⎠⎛⎝ M∑
j=1

sin2 θi,j

σ 2
θi,j
R2
i,j

⎞⎠

−
⎛⎝ M∑

j=1

sin θi,j cos θi,j

σ 2
θi,j
R2
i,j

⎞⎠2

.

By applying the CRB inequality (Equation 17) to the
diagonal elements of F−1, we find that the estimation error
on the x-dimension is lower-bounded by

σ 2
xPi ,CR

=

⎡⎢⎢⎢⎣
⎛⎝ M∑

j=1

sin2 θi,j

σ 2
θi,j
R2
i,j

⎞⎠ −

(∑M
j=1

sin θi,j cos θi,j
σ 2

θi,j
R2i,j

)2

(∑M
j=1

cos2 θi,j
σ 2

θi,j
R2i,j

)
⎤⎥⎥⎥⎦

−1

,

(21)

and similarly, the error on the y-dimension by

σ 2
yPi ,CR

=

⎡⎢⎢⎢⎣
⎛⎝ M∑

j=1

cos2 θi,j

σ 2
θi,j
R2
i,j

⎞⎠ −

(∑M
j=1

sin θi,j cos θi,j
σ 2

θi,j
R2i,j

)2

(∑M
j=1

sin2 θi,j
σ 2

θi,j
R2i,j

)
⎤⎥⎥⎥⎦

−1

.

(22)

If all sensors are located at equal distance Ri from the
target and have the same DoA estimation variance σ 2

θi
, the

above expressions are simplified to the following:

σ 2
xPi ,CR

= R2
i σ

2
θi∑M

j=1 sin2 θi,j −
(∑M

j=1 sin θi,j cos θi,j
)2

∑M
j=1 cos2 θi,j

, (23)

σ 2
yPi ,CR

= R2
i σ

2
θi∑M

j=1 cos2 θi,j −
(∑M

j=1 sin θi,j cos θi,j
)2

∑M
j=1 sin2 θi,j

. (24)

These expressions show that the estimation error vari-
ance scales linearly with the DoA estimation variance and
quadratically with the target distance.
Finally, we express the quantity Tr(	xPi ) that bounds

the MSE norm of any unbiased estimator x̂Pi . From
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Equations 21 to 22 and defining Ci,j � 1/(σθi,jRi,j), we
obtain the following:

Tr(	xPi ) = σ 2
xPi ,CR

+ σ 2
yPi ,CR

=
∑M

j=1 C2
i,j

(
∑M

j=1 C2
i,j cos2 θi,j)(

∑M
j=1 C2

i,j sin2 θi,j) − (
∑M

j=1 C2
i,j sin θi,j cos θi,j)2

(25)

=
∑M

j=1 C2
i,j∑M

j �=k C2
i,jC

2
i,k

(
sin2 θi,j cos2 θi,k − sin θi,j sin θi,k cos θi,j cos θi,k

) . (26)

The above expression is useful to identify non-
observability conditions, i.e., configurations where
Tr(	xPi ) → ∞. Consider for example the case M = 2.
Equation 26 becomes

Tr(	xPi )
∣∣∣
M=2

= C2
i,1 + C2

i,2
(Ci,1Ci,2)2(cos θi,1 sin θi,2 − sin θi,1 cos θi,2)2

= C2
i,1 + C2

i,2
(Ci,1Ci,2)2 sin2(θi,1 − θi,2)

.

(27)

Hence, the CRB is infinite if

θi,1 − θi,2 = kπ , (28)

for k = 0, 1, 2. This result is consistent with [14], where
it was shown from geometric considerations that non-
observability occurs if the sensors are placed on a straight
line passing through the target. ForM = 2, this condition
corresponds exactly to θi,1 − θi,2 = π .
Note that there is an infinite number of configurations

satisfying Equation 28. Thus, if we assume angles θi,1 and
θi,2 to be random and uniformly distributed in [ 0, 2π), a
configuration with M = 2 sensors does not provide reliable
PU localization. Mathematically, the reason is that if both
θi,1 and θi,2 are uniformly distributed, so is θ ′ = θi,1 − θi,2,
and the expected value of Equation 27 with respect to θ ′
tends to ∞ because

1
2π

lim
ε→0

∫ 2π−ε

ε

1
sin2 θ ′ dθ ′ = 1

2π
lim
ε→0

[− cot θ ′]2π−ε

ε

= +∞.

A physical interpretation is that the ambiguity of π

in DoA estimation makes it impossible to distinguish
between angles whose difference is π .
If we increase the number of sensors (M ≥ 3), configu-

rations such that the denominator of Equation 26 is 0 (i.e.,
all sensors lying on the same straight line) become events
with zero probability. We conclude that the minimum
number of sensors should beM = 3.

4.2 Practical algorithms
In this section, we introduce different DoA-only local-
ization methods (ML, LS, and Stansfield estimators) and
discuss their application in CR networks. Before contin-
uing, the following preliminary observations need to be
made:

• For simplicity of presentation, we consider M DoA
measurements to be collected by the fusion center at
the same time. In practice, such measurements may
also be obtained during different time slots. In this
case, the considered estimators are implemented
through iterative numerical methods (which, in fact,
can be used in the case of simultaneous
measurements as well). However, multiple
measurements per sensor are beneficial only if
sensors move; otherwise, they may result in matrix
singularities which ultimately degrade the estimation
quality.

• We do not consider the extended Kalman filter
because this method provides poor performance
when applied to DoA-only localization, as proven in
[12].

• While CRB results presented in section 4.1 hold for
an arbitrary number of coexisting signals (as long as
n < m), in practice, data association of multiple
DoAs observed by multiple sensors is a non-trivial
problem (precisely, it is NP-hard. See, e.g., [22] and
references therein). For this reason, in this paper, we
assume ideal identification of PUs by SUs, i.e., either
there is a single PU observed by multiple sensors or
there are multiple PUs, but each of them can be
unambiguously identified by SUs by exploiting other
information, e.g., detection of carrier frequency,
bandwidth, modulation type. We thus remove index i
in the following (e.g., θj ≡ θi,j).

4.2.1 Maximum-likelihood estimator
The ML estimator (see, e.g., [13,15,16]) is given as
follows:

x̂P,ML = argmin
xP

FML(xP, θ), (29)
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with

FML(xP, θ) = 1
2
(�θ)TW−1(�θ) = 1

2

M∑
j=1

(�θj)2

σ 2
θj

,

(30)

with �θj � |θ̂j � θj|, �θ �[�θ1, . . . ,�θM]T , and
W � diag(σ 2

θ1
, . . . , σ 2

θM
). The symbol � denotes difference

modulo 2π ; we then definec:

|a � b| � min{a � b, b � a}. (31)

The minimization of Equation 29 is a non-linear least-
squares problem and can be performed by iterative
methods. The most popular of these methods is the
Gauss-Newton algorithm [15,16], but it is very sensitive
to the initial value. More robust iterative methods are the
Levenberg-Marquardt algorithm [23] or the trust-region-
reflective (TRR) algorithm [24].
As shown in [15], the ML algorithm, asymptotically in

the number of measurementsM, is unbiased and achieves
the CRB. However, we will show in section 5.2 that the
theoretical performance of the ML estimator is degraded
when adopting iterative implementations as cases of non-
convergence often occur.

4.2.2 Stansfield estimator
The Stansfield estimator, introduced in [20], is based on an
approximation of the ML problem Equation 30 by letting
�θj ≈ sin(�θj), which holds for �θj → 0. This formula-
tion results in a linearization of the originally non-linear
ML problem so that it can be solved in closed form as
follows (see [15] for more details):

x̂P,St = (AT
StR

−1W−1ASt)
−1AT

StR
−1W−1bSt, (32)

where

ASt �

⎡⎢⎣ sin θ̂1 − cos θ̂1
...

...
sin θ̂M − cos θ̂M

⎤⎥⎦ ,

bSt �

⎡⎢⎣ xS1 sin θ̂1 − yS1 cos θ̂1
...

xSM sin θ̂M − ySM cos θ̂M

⎤⎥⎦ ,

and R � diag(R2
1, . . . ,R

2
M). Note that the Stansfield esti-

mator involves the distances Rj between sensors and
target; however, as discussed in [16] and confirmed by
simulation results (see section 5.2), the dependency of the
estimator on R is quite weak. For this reason, if distances
are unknown (as it is the case in CR networks), R can
be roughly estimated from the received signal strength
or simply replaced by an identity matrix. In the rest of
the paper, we will consider the latter case (worst-case
scenario).

The Stansfield estimator was shown [15] to provide
excellent performance in terms of mean square error
(which can be even smaller than that of the ML estima-
tor when M is small), but it was also shown to be biased
(hence, not directly comparable to the CRB).

4.2.3 Least-squares estimator
Finally, a simple linear LS position estimate can be
obtained by solving the system of equations:

tan θ̂j = yP − ySj
xP − xSj

, (33)

following directly from Equation 2 where DoA θj
is replaced by its estimate. Writing in matrix form
Equation 33 for j from 1 toM, we obtain the following:

ALSx̂P,LS = bLS, (34)

with

ALS �

⎡⎢⎣ tan θ̂1 −1
...

...
tan θ̂M −1

⎤⎥⎦ ,

bLS �

⎡⎢⎣xS1 tan θ̂1 − yS1
...

xS1 tan θ̂1 − yS1

⎤⎥⎦ .

The solution is then given as follows:

x̂P,LS = (AT
LSALS)

−1AT
LSbLS. (35)

Similar to ML and Stansfield estimators, a weighted
version of the LS estimator can also be obtained:

x̂P,W−LS = (AT
LSW

−1ALS)
−1AT

LSW
−1bLS. (36)

The linear LS estimator is not asymptotically unbiased:
as shown in simulation results, its estimation accuracy
tends to saturate asM grows.

5 Numerical results and analysis
In this section, we investigate the performance of the
methods presented in the previous sections as a func-
tion of several systems parameters. We first consider DoA
estimation (section 3): we compare the performance of
MUSIC against the CRB and show how DoA estima-
tion accuracy scales with the number of antennas m.
We then consider the DoA-based localization algorithms
presented in section 4: we compare the position error
achieved by LS, ML, and Stansfield estimators and ana-
lyze the impact of the number of sensors M as well as
the number of antennas per sensor m. We finally investi-
gate the trade-off between the above parameters, in case
of ideal conditions (uniform distance of all sensors from
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target, optimal orientation of sensor arrays) or realistic
conditions (random distance and orientation).

5.1 DoA estimation
The DoA estimation variance achieved by the MUSIC
algorithm using a ULA is given by Equation 14, and
the corresponding CRB is given by Equation 12. In
order to compare MUSIC performance against the CRB,
we evaluate the DoA RMSE, i.e., the square root of
the average (�θ)2 over several simulations, with �θ

defined as in Equation 30. Without loss of general-
ity, we assume ideal orientation of the array, such that
θ̃ = 0 in Equations 12 and 14. Different array orientations
would result in a constant (in logarithmic scale) penalty
term.
In Figure 2, the DoA RMSE, averaged over 104 itera-

tions, is plotted as a function of the number of antennas
m for different values of SNR (ρ = 0 dB and ρ = −5 dB).
The number of received signal samples is set to N = 100.
The following observations can be made:

• Validation of MUSIC performance expressions. The
formula of MUSIC estimation variance Equation 14
matches with the simulation results.

• MUSIC vs. CRB. The gap between MUSIC
estimation error and CRB is small and tends to
reduce as the SNR increases (see section 3.2).

• Impact of number of antennas. The DoA estimation
accuracy (for both MUSIC and CRB) monotonically
improves with m, following an almost linear trend on
a logarithmic scale. No saturation is observed for
practical values of m (i.e.,m ≤ 10), which suggests
that the more antennas are used by each sensor, the

2 3 4 5 6 7 8 9 10
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D
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ad
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DoA estimation error

Simul.
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CRB

SNR = −5 dB

SNR = 0 dB

Figure 2 RMSE of the DoA estimation error vs. number of
antennas. N = 100 received signal samples, 104 Monte Carlo
iterations.

more accurate DoA estimates (and, therefore, PU
localization) would be obtained.

5.2 Localization
We now analyze the performance of the ML, LS, and
Stansfield localization methods introduced in section 4.

5.2.1 Error distributions
In Figure 3, we evaluate the distribution of the position
error defined as follows:

εxP � ‖x̂P − xP‖, (37)

computed over 1, 000 simulations. The true PU position is
set, without loss of generality, to xP =[ 0, 0]T .
At every simulation, M sensor positions are selected

randomly on a unit-radius circle centered in xP so that all
sensors are at equal distance (Rj = 1 unit) from the tar-
get. The DoA estimation variance of each sensor (σθj ) is
random, uniformly distributed between 10◦ and 30◦. For
each of the considered estimators, we test two versions:
weighted (W) estimators (W-ML, W-Stansfield, W-LS)
that assume knowledge of the values σθj , i.e., of the matrix
W in Equations 30, 32, and 36, respectively, and non-
weighted estimators (ML, Stansfield, LS) that replace W
by an identity matrix, thus assigning equal weight to all
sensors.
The ML method is implemented iteratively, starting

from an initial guess x0 ∼ N (xP, σ 2
0 I2) selected randomly

at each Monte Carlo simulation, with σ0 = 1.5 distance
units. The TRR implementation is adopted as it proves to
be more robust than the Gauss-Newton algorithm (which
does not converge if the initial guess is far from the true
value).
Results, shown for three cases M = 3, M = 5, and

M = 8, reveal the following:

• The Stansfield method provides the best performance
among the three considered estimators. It reaches
convergence in 100% of cases, while the ML CDF
saturates around 90/95% due to cases of
non-convergence (which become more frequent as
M increases). Notice that suboptimality of the ML
estimator is due exclusively to iterative
implementation, which is sensitive to the initial
estimate and may converge to local minima. The
Gauss-Newton implementation provides even worse
results, i.e., it fails to converge in 20%/25% of cases in
the considered setting. The LS solution is close to the
Stansfield solution forM = 3, but it becomes much
more suboptimal as M grows.

• Weighted estimators provide in general a modest
performance improvement over non-weighted ones,
for the considered DoA variance range
(σθj ∈[ 10◦, 30◦]). The gap increases for large M when
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Figure 3 CDFs of position error εxP (x is in distance units) for ML,
LS, and Stansfield estimators. Random DoA estimation variance σ 2

θj

at different sensors.

more different DoA measurements (hence more
weights) are available.

5.2.2 Position RMSE and CRB vs. number of sensors
We now compare the performance of ML, LS, and Stans-
field estimators against the CRB derived in section 4.1, and
we study their evolution with the sensor number M. To
this purpose, we consider the position RMSE computed as
the square root of the average square error ε2xP = ‖x̂P −
xP‖2 over multiple iterations and random sensor posi-
tions. The lower bound of the position RMSE for unbiased
estimators is given by the square root of the average of
Tr(	xP ) = σ 2

x,CR + σ 2
y,CR (see section 4.1) over the same

random sensor positions.
In our simulation, we assume sensors to be equidis-

tant from the target PU (Rj = 1 distance unit ∀j) and,
at every new random configuration, we generate M sen-
sor positions as xSj =[ cosφj, sinφj]T with φj ∼ U[ 0, 2π).
Angles φj are defined as the angles of sensors j with
respect to target, i.e., φj = (θj − π) mod 2π ; hence,
angles θj are also random with the same uniform distribu-
tion as φj. We generate 100 random sensor positions (i.e.,
100 random vectors [φ1, . . . ,φM]), where we compute the
CRB and test the performance of LS, ML, and Stansfield
methods by running 1, 000 Monte Carlo simulations per
configuration.
The simulation is repeated for values of M from 2

to 10. Note that LS and Stansfield estimators are not
directly comparable to the CRB because they are not unbi-
ased (so their RMSE could be, in principle, lower than
the CRB); however, the CRB still represents an impor-
tant benchmark to evaluate the quality of the position
RMSE achieved by practical algorithms. For M = 2,
when generating [φ1,φ2], we impose the constraints
5◦< |φ1 � φ2| < 175◦ so as to avoid configurations
close to non-observability conditions (see section 4.1)
that would result in RMSE and CRB → ∞. In this
case, the DoA estimation variance is constant (σθj =
10◦ ∀j) so that weighted and non-weighted algorithms are
identical.
Results are shown in Figure 4. The Stansfield method

provides the best performance for all values of M, and
it achieves the CRB for M > 3. The LS performance is
almost equivalent to that of the Stansfield method for low
numbers of sensors (M = 2 and M = 3), but it does
not further improve as M grows; therefore, if the linear
LS method is adopted, there is no advantage in having
more than three or four sensors. The ML-TRR algorithm,
finally, turns out to be suboptimal due to non-convergence
issues. For a more fair comparison, we have plotted the
performance curve of ML, ignoring cases of evident non-
convergence (i.e., discarding values of RMSE> 1, 000).
Still, this method is strongly suboptimal compared to both
Stansfield and LS.
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5.2.3 Position RMSE and CRB vs. DoA (for M = 2)
To give more insight into the case M = 2, in Figure 5, we
compare the CRB and the RMSE of the Stansfield method
as a function of the DoA difference:

θ� � |θ2 � θ1|. (38)

Values of θ� from 0 to 2π are considered, with a step
of π/20. It can be observed that, as predicted by the the-
ory, θ� = 0 and θ� = π are non-observability conditions;
therefore, both the CRB and the Stansfield error tend to
diverge as θ� approaches such critical values. The diver-
gence of the CRB is sharp, while the Stansfield method
exhibits a smoother behavior. The Stansfield RMSE nearly
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Figure 5 Position CRB and RMSE of the Stansfield estimator for
M = 2 as a function of θ� = |θ2 � θ1|.

attains the CRB for values of θ� far from 0 and π ,
and it becomes suboptimal in the regions close to non-
observability.

5.2.4 Position RMSE vs. number of antennas
Similar to section 5.1 where we have evaluated the impact
of m on DoA estimation accuracy, we now investigate
the resulting impact of m on the position RMSE. Results
shown in Figure 6 refer to a scenario with M = 5 sen-
sors and assume the same number of antennasm, ranging
from 2 to 10, for all sensors. The SNR is set to ρ = 0 dB;
the number of received signal samples used by MUSIC is
N = 100. The CRB reported in the plot is computed with
σ 2

θj
= σ 2

θj ,CR given by Equation 12.
We observe that, both from the point of view of the CRB

and of practical algorithms, the position RMSE is reduced
by increasing the number of antennas. Thus, the local-
ization accuracy as a function of the number of antennas
is not affected by saturation phenomena that occur when
increasing the number of sensors (see Figure 4). We also
note that the RMSE of the Stansfield algorithm tends to
achieve the CRB asm → ∞.

5.3 Trade-off between number of sensors and number of
antennas

So far, we have analyzed the position accuracy as a func-
tion of different system parameters, in particular, the
number of sensors M and the number of antennas m. A
natural question may be asked: which one of these two
factors is more important with regard to PU localiza-
tion accuracy? To address this question, let us consider
a CR network with a total of K antennas; assume that
such antennas can be arbitrarily organized into arrays (for
simplicity, ULAs) to localize a PU transmitter; then, if
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Figure 6 Average position RMSE (100 sensor configurations
× 1,000 iterations) vs. number of antennas per sensor.M = 5,
N = 100, ρ = 0 dB.
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every array has m elements, the number of arrays (hence,
of DoA measurements) isM = �K/m�.
We then formulate the problem as follows: given a fixed

number of antennas K, we want to determine the optimal
trade-off [m,M] between number of antennas per sensor
and number of sensors, with m × M ≤ K . It has been
shown in Figure 6 that increasing m constantly improves
the localization accuracy; on the contrary, increasing the
number of sensors besides a certain value (around M =
4) does not provide significant advantages, as shown in
Figure 4. For this reason, we expect that the best trade-off
will be obtained form > M.
We next consider three cases: (1) uniform sensor-

target distance and ideal array orientation for all sensors
(Rj = 1 unit, cos θ̃j = 1 ∀j); (2) random dis-
tance: Rj ∼ U[ 0.5, 1.5] units ∀j; and (3) random dis-
tance and random array orientation: θ̃j ∼ U[ 0, 2π).
Results are shown, respectively, in Figures 7, 8, 9.
The total number of antennas is set as K = 36,
a number that allows for several exact combinations
[m,M] such thatm×M = 36. The pair [m = 18,M = 2]
is excluded a priori, because M = 2 gives rise to non-
observability conditions, as discussed in section 4.1. The
performance of LS and Stansfield estimators is plotted
along with two CRBs: one computed with σ 2

θj
= σ 2

θj ,CR
given by Equation 12 and the other one with σ 2

θj
= σ 2

θj ,MU
given by Equation 14. Again, the number of samples used
inMUSIC isN = 100 and the SNR is ρ = 0 dB. All simula-
tions are averaged over 100 random sensor configurations
and 1, 000 iterations per configuration.
In ideal conditions (Figure 7), the optimal trade-off is

located, as expected, in the region m > M for all curves.
In particular, according to the CRB and to the Stansfield
method, the optimal combination is [m = 9,M = 4],
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Figure 7 Antennas-sensors trade-off: uniform sensor-target
distance, ideal array orientation.
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Figure 8 Antennas-sensors trade-off: random sensor-target
distance, ideal array orientation.

while using the LS method, the optimum is at [m = 12,
M = 3]. Such discrepancy is explained by the results of
Figure 4: for a givenDoA estimation variance, the LS local-
ization RMSE does not significantly improve fromM = 3
to M = 4; therefore, it is more advantageous to keep
M = 3 and increase the number of antennas from 9 to 12
so as to improve σ 2

θj
. We note, then, that the gap between

the two CRBs is very moderate (i.e., MUSIC by itself pro-
vides excellent DoA estimation performance, as already
observed in Figure 2), and that the Stansfield RMSE equals
CRB(σ 2

θ ,MU) except forM = 3 (cf. Figure 4).
When introducing variable distances (Figure 8), a sim-

ilar behavior is observed. The only difference is that the
Stansfield estimator becomes slightly suboptimal com-
pared to the CRB because we assume distances to be
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Figure 9 Antennas-sensors trade-off: random sensor-target
distance, random array orientation.
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unknown, so R is still considered an identity matrix in
Equation 32. The conclusion is that different distances of
sensors from the target only have a minor impact on the
resulting localization accuracy,
Very different results are obtained when considering

non-ideal array orientation (Figure 9). Note that the
assumption of random uniformly distributed θ̃j may cor-
respond either to a scenario where each sensor has a
different, random orientation or to a scenario where all
sensors have equal orientation (in this case, θ̃j = θj +
a constant offset; therefore, θ̃j is random like θj). We
consider here two variants of the LS and Stansfield estima-
tors: one where the orientation is known and coefficients
1/(κ cos θ̃j)2 are incorporated in the weight matrix W,
and one where the orientation is unknown, so W = I.
Figure 9 shows that ‘weighted’ estimators, W-LS and W-
Stansfield, achieve good performance (close to the CRB
for W-Stansfield), while standard estimators are strongly
suboptimal and provide nearly constant RMSE for all val-
ues of m and M. The best trade-off is located at values
of M lower than in the previous scenarios: [m = 6,
M = 6] for Stansfield and CRB, and [m = 9,M = 4]
for LS, i.e., one step less than in the other cases (Figures 7
and 8). This behavior can be explained by observing that,
when each sensor has a random orientation, more ‘sen-
sor diversity’ is necessary to achieve good performance.
In terms of absolute values, the best RMSE achievable
with random orientation is approximately 0.02, while it is
approximately 0.008 in the case of ideal orientation. The
gap is approximately 4 dB.
The above results show that it is important that the array

orientation is taken into account by SUs. We remark that
θ̃j is simply the DoA of the impinging wave, which is esti-
mated through MUSIC; therefore, it is sufficient to use
the MUSIC DoA estimates ˆ̃θ j to fill the weight matrix W.
Then, if sensors are able to rotate, another possibility is to
rotate the array towards θ̃j = 0 so as to optimize the ori-
entation factor. This can be implemented by an iterative
procedure. First the sensor, using MUSIC, estimates the
DoA θ̃j, and then, it rotates by −ˆ̃θ j, so that the new orien-
tation is θ̃ ′

j = θ̃j − ˆ̃θ j. At this point, if a new estimate of θ̃j
is taken using MUSIC, the DoA estimation variance gets

reduced by a factor
(
cos(θ̃j − ˆ̃θ j)/ cos(θ̃j)

)2
as followed

from Equation 14. Then, if needed, the array rotation can
be readjusted based on the new estimate. Iteration can be
stopped when the estimated DoA stabilizes around ˆ̃θ j ≈ 0,
i.e., when the array is approximately orthogonal to the sig-
nal direction. The results of the above array orientation
procedure are illustrated in Figure 10. The plots show the
convergence of the position RMSE as a function of the
number of iterations, averaged over 104 Monte Carlo sim-
ulations for a given sensor configuration, with ρ = 0 dB,
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Figure 10 Convergence of position RMSE vs. iterations of the
array orientation procedure. N = 100 received signal samples, SNR
ρ = 0 dB, 104 Monte Carlo iterations.

N = 100 samples,m = 6 antennas per sensor, andM = 6
sensors. The iterative algorithm converges very quickly,
with a steep error reduction after one iteration. The result-
ing position RMSE nearly achieves the CRB, like in the
case of ideal array orientations (Figure 8). Similar results
are obtained with different values ofm andM as well.

6 Implementation issues
The key requirements for practical implementation of
the proposed localization method in a cognitive radio
network can be listed as follows:

1. Availability or multi-antenna SU devices (possibly
with rotation capabilities),

2. Existence of a wired or wireless link for sending DoA
measurements from distributed sensors to a fusion
center, and

3. Sufficient processing power and energy supply to
support DoA estimation at the sensor nodes and
DoA fusion at the fusion center.

Regarding the first point, multi-antenna cognitive radios
are nowadays a common assumption in the spectrum
sensing literature (see, for example, [5] and references
therein) and can be therefore exploited to combine
DoA estimation with traditional signal detection with lit-
tle additional complexity. Furthermore, the number of
antennas we considered in our numerical examples is
within practical limits of current base stations and Wi-Fi
access points. We also remark that, if antenna arrays
are not available, directional antennas or electronically
steerable antennas [25] can be used as well. A more
challenging requirement is the availability of rotating
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arrays, which may be feasible only in certain scenar-
ios (e.g., vehicle terminals, dedicated spectrum monitors,
base stations). However, the availability of such type of
devices is not a prerequisite of the algorithm but only
a possible way to optimize performance (see Figure 10).
In the absence of rotating arrays, localization perfor-
mance can be still improved by increasing the num-
ber of sensors or using proper weighting matrices (see
Figure 9).
Coming to the second point, let us first consider the

case of physical antenna arrays (SUs equipped with multi-
ple antennas). The proposed algorithm involves exchange
of DoA measurements from M − 1 distributed sensors to
a fusion center (it is assumed that the fusion center itself
is one of the M cooperating sensors). In addition, if the
array orientation of sensor nodes is unknown to the fusion
center, M − 1 additional angle measurements should be
sent from the distributed sensors in order to establish a
common coordinate system. Hence, if a scalar angle mea-
surement is encoded by one ‘information unit’ (e.g., 1
byte), the signaling overhead of the algorithm amounts to
2(M − 1) = O(M) information units, i.e., it scales linearly
with the number of sensors. Given the moderate band-
width requirement, the algorithm lends itself well to both
wired and wireless implementations. In the latter case, the
sensors can communicate to the fusion center via a dedi-
cated channel (‘common control channel’ [26,27]), which
may be either predefined or selected dynamically after a
preliminary spectrum sensing phase. In the case of virtual
arrays (m single-antenna users performing MUSIC coop-
eratively), there is an additional signaling overhead within
each sensor array. Assuming that one user acts as a local
fusion center, each of the remaining m − 1 users must
transmitN received signal samples over the wireless chan-
nel, hence the signaling overhead per sensor is N(m − 1)
complex numbers. In this case, the number of samples (N)
should not be too large, and synchronization between the
users within a virtual array is crucial.
Finally, numerical complexity (and, consequently,

energy consumption) is dominated by the eigenvalue or
singular value decomposition (EVD/SVD) necessary to
implement MUSIC at each sensor node. The number of
floating-point operations required for EVD (applied to
the m × m covariance matrix) is ≈ 10m3, while for SVD
(applied to them × N data matrix) it is ≈ k1Nm2 + k2m3,
where k1, k2 are constants [28,29]. Therefore, in general,
the complexity of EVD/SVD scales as O(m3). Clearly, this
task may be critical in terms of processing power and
battery consumption for sensor nodes. We note, however,
that (1) according to our simulation results, accurate
localization can be achieved with a limited number of
antennas per sensor, resulting in an affordable complexity
for typical state-of-the-art embedded processors (for a
practical DSP implementation of MUSIC, we refer to

[30]); (2) although we have considered here the classic
MUSIC algorithm, low-complexity variants exist in the
literature (see, for example, [31-33]). The DoA fusion step
(using LS or Stansfield estimation) then involves solving
a system of linear equations (Equations 32 and 34). This
task can be performed by LU factorization and Gaus-
sian elimination [29] with complexity O(M3). Since it is
reasonable to assume for the fusion center higher com-
putation power than the other sensor nodes and wired
connection to the network backbone, the computational
burden of DoA fusion is generally less critical than the
one involving distributed sensors.
Signaling overhead and numerical complexity, with

respect to the distributed sensors and the fusion cen-
ter, are summarized in Table 1. Note that in the first
case (multi-antenna sensors), there is no signaling towards
the distributed sensors but only from the sensors to
the fusion center. Also note that the fusion center per-
forms first (local) DoA estimation and then fusion of DoA
estimates from all sensors; since both tasks have cubic
complexity (respectively, in the number of antennas and
in the number of sensors), the resulting complexity is
O(max{m,M}3).
We finally remark that the proposed method is robust

to possible failures of sensor nodes (due to low battery
or other reasons), as long as at least three sensors remain
operational.

7 Conclusions
In this paper, we have investigated PU localization in CR
networks by DoA-based techniques, where DoA estimates
are obtained by multi-antenna sensors. The key advan-
tage of the proposed approach is that it does not rely on
range measurements (difficult to obtain in a CR network
where PUs do not collaborate with SUs) nor on precise
synchronization of different sensors (needed for TDoA
techniques).
The following conclusions can be drawn from the

results presented in the paper:

• Very accurate PU localization can be obtained using
the MUSIC algorithm for DoA estimation at each
sensor and the Stansfield method to combine DoA
measurements together. In this way, the PU position
RMSE nearly achieves the CRB.

Table 1 Signaling overhead and numerical complexity

Distributed sensors Fusion center

Signaling overhead - O(M)

Signaling overhead
(virtual array case)

O(N(m − 1)) O(M)

Numerical complexity O(m3) O(max{m,M}3)
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• Other DoA fusion methods, namely the linear LS
estimator and the ML estimator implemented
iteratively, are inferior to the Stansfield estimator.

• In order to maximize the localization accuracy, the
effect of the number of antennas per sensor prevails
over the effect of the number of sensors.

• If sensor arrays have random orientation, the
performance is affected by a major penalty factor,
which should be compensated by properly weighting
DoA measurements from different sensors or
rotating sensors (when possible) so as to optimize
their orientation.

Endnotes
aIn the navigation context, it typically assumed that mul-
tiple observations are obtained by a unique sensor at
different positions (i.e., a maneuvering ship), whereas in
CR networks we assume that observations are taken by
multiple sensors at the same time, and then gathered by
one node acting as a fusion center.
bIf subspace methods (e.g., MUSIC) are used, the max-
imum number of identifiable primary signals is m − 1.
Thus, we assume n < m.
cThe adopted formulation ensures that the difference
between two arbitrary angles is always computed cor-
rectly (e.g., |1°�351°| = 10°. On the contrary, |1°−351°| =
1°�351°= 350° is formally correct too, but leads to over-
estimate an error that is in fact small, which is a problem
for iterative implementation of the ML method).
dTRR is implemented using the Optimization Toolbox of
Matlab v7.8.
eAn exact ML solution would give at least the same per-
formance of the Stansfield estimator, which is in fact an
approximation of theML estimator for�θ → 0. However,
anML implementation through exhaustive search (e.g., on
a grid of points) would be prohibitive in terms of complex-
ity and still suboptimal due to discretization of the search
space.
fThemain source of complexity of DoA estimation is given
by the eigenvalue decomposition of the covariance matrix,
which is also required for most of the existing multi-
antenna detection techniques.
gThe sensors are assumed to be aware of their own posi-
tion as well as that of the fusion center so that they are able
to estimate the relative angle. This step is not necessary if
the positions of sensor nodes are fixed and/or known in
advance at the fusion center.
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