310 research outputs found

    Spatial distribution and galactic model parameters of cataclysmic variables

    Full text link
    The spatial distribution, galactic model parameters and luminosity function of cataclysmic variables (CVs) in the solar neighbourhood have been determined from a carefully established sample of 459 CVs. The sample contains all of the CVs with distances computed from the Period-Luminosity-Colours (PLCs) relation of CVs which has been recently derived and calibrated with {\em 2MASS} photometric data. It has been found that an exponential function fits best to the observational z-distributions of all of the CVs in the sample, non-magnetic CVs and dwarf novae, while the sech^{2} function is more appropriate for nova-like stars and polars. The vertical scaleheight of CVs is 158±\pm14 pc for the {\em 2MASS} J-band limiting apparent magnitude of 15.8. On the other hand, the vertical scaleheights are 128±\pm20 and 160±\pm5 pc for dwarf novae and nova-like stars, respectively. The local space density of CVs is found to be ∼3×10−5\sim3\times10^{-5} pc^{-3} which is in agreement with the lower limit of the theoretical predictions. The luminosity function of CVs shows an increasing trend toward higher space densities at low luminosities, implying that the number of short-period systems should be high. The discrepancies between the theoretical and observational population studies of CVs will almost disappear if for the z-dependence of the space density the sech^{2} density function is used.Comment: 29 pages, 9 figures and 5 tables, accepted for publication in New Astronom

    Kinematics of W UMa-type binaries and evidences on the two types of formation

    Full text link
    The kinematics of 129 W UMa binaries is studied and its implications on the contact binary evolution is discussed. The sample is found to be heterogeneous in the velocity space that kinematically younger and older contact binaries exist in the sample. Kinematically young (0.5 Gyr) sub-sample (MG) is formed by selecting the systems which are satisfying the kinematical criteria of moving groups. After removing the possible MG members and the systems which are known to be members of open clusters, the rest of the sample is called Field Contact Binaries (FCB). The FCB has further divided into four groups according to The orbital period ranges. Then a correlation has been found in the sense that shorter period less massive systems have larger velocity dispersions than the longer period more massive systems. Dispersions in the velocity space indicates 5.47 Gyr kinematical age for the FCB group. Comparing with the field chromospherically active binaries (CAB), presumably detached binary progenitors of the contact systems, the FCB appears to be 1.61 Gyr older. Assuming an equilibrium in the formation and destruction of CAB and W UMa systems in the Galaxy, this age difference is treated as empirically deduced lifetime of the contact stage. Since the kinematical ages of the four sub groups of FCB are much longer than the 1.61 Gyr lifetime of the contact stage, the pre-contact stages of FCB must dominantly be producing the large dispersions. The kinematically young (0.5 Gyr) MG group covers the same total mass, period and spectral ranges as the FCB. But, the very young age of this group does not leave enough room for pre-contact stages, thus it is most likely that those systems were formed in the beginning of the main-sequence or during the pre-main-sequence contraction phase.Comment: 19 pages, including 11 figures and 5 tables, accepted for publication in MNRA

    On the eclipsing cataclysmic variable star HBHA 4705-03

    Full text link
    We present observations and analysis of a new eclipsing binary HBHA 4705-03. Using decomposition of the light curve into accretion disk and hot spot components, we estimated photometrically the mass ratio of the studied system to be q=0.62 +-0.07. Other fundamental parameters was found with modeling. This approach gave: white dwarf mass M_1 = (0.8 +- 0.2) M_sun, secondary mass M_2=(0.497 +- 0.05) M_sun, orbital radius a=1.418 R_sun, orbital inclination i = (81.58 +- 0.5) deg, accretion disk radius r_d/a = 0.366 +- 0.002, and accretion rate dot{M} = (2.5 +- 2) * 10^{18}[g/s], (3*10^{-8} [M_sun/yr]). Power spectrum analysis revealed ambiguous low-period Quasi Periodic Oscillations centered at the frequencies f_{1}=0.00076 Hz, f_2=0.00048 Hz and f_3=0.00036 Hz. The B-V=0.04 [mag] color corresponds to a dwarf novae during an outburst. The examined light curves suggest that HBHA 4705-03 is a nova-like variable star.Comment: 7 figures and 2 tables, accepted for publication in Acta Astronomic

    On the Zero Point Constant of the Bolometric Correction Scale

    Full text link
    Arbitrariness attributed to the zero point constant of the VV band bolometric corrections (BCVBC_V) and its relation to "bolometric magnitude of a star ought to be brighter than its visual magnitude" and "bolometric corrections must always be negative" was investigated. The falsehood of the second assertion became noticeable to us after IAU 2015 General Assembly Resolution B2, where the zero point constant of bolometric magnitude scale was decided to have a definite value CBol(W)=71.197 425 ...C_{Bol}(W)= 71.197~425~...~. Since the zero point constant of the BCVBC_V scale could be written as C2=CBol−CVC_2=C_{Bol}-C_V, where CVC_V is the zero point constant of the visual magnitudes in the basic definition BCV=MBol−MV=mbol−mVBC_V=M_{Bol}-M_V=m_{bol}-m_V, and CBol>CVC_{Bol}>C_V, the zero point constant (C2C_2) of the BCVBC_V scale cannot be arbitrary anymore; rather, it must be a definite positive number obtained from the two definite positive numbers. The two conditions C2>0C_2>0 and 0<BCV<C20<BC_V<C_2 are also sufficient for LV<LL_V<L, a similar case to negative BCVBC_V numbers, which means that "bolometric corrections are not always negative". In sum it becomes apparent that the first assertion is misleading causing one to understand bolometric corrections must always be negative, which is not necessarily true.Comment: 12 pages, including 3 figures and 1 table, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Kinematics of the chromospherically active binaries and evidence of an orbital period decrease in binary evolution

    Full text link
    Kinematics of 237 Chromospherically Active Binaries (CAB) were studied. The sample is heterogeneous with different orbits and physically different components from F to M spectral type main sequence stars to G and K giants and super giants. The computed UU, VV, WW space velocities indicate the sample is also heterogeneous in the velocity space. That is, both kinematically younger and older systems exist among the non-evolved main sequence and the evolved binaries containing giants and sub giants. The kinematically young (0.95 Gyr) sub-sample (N=95), which is formed according to the kinematical criteria of moving groups, was compared to the rest (N=142) of the sample (3.86 Gyr) in order to investigate observational clues of the binary evolution. Comparing the orbital period histograms between the younger and older sub-samples, evidences were found supporting Demircan's (1999) finding that the CAB binaries lose mass (and angular momentum) and evolve towards shorter orbital periods. The evidence of mass loss is noticeable on the histograms of the total mass (Mh+McM_{h}+M_{c}), which is compared between the younger (available only N=53 systems) and older sub-samples (available only N=66 systems). The orbital period decrease during binary evolution is found to be clearly indicated by the kinematical ages of 6.69, 5.19, and 3.02 Gyr which were found in the sub samples according to the period ranges of logP≤0.8logP\leq0.8, 0.8<logP≤1.70.8<logP\leq1.7, and 1.7<logP≤31.7<logP\leq3 among the binaries in the older sub sample.Comment: 26 pages, including 11 figures and 5 tables, 2004, MNRAS, 349, 106
    • …
    corecore