163 research outputs found

    Team Dynamics Theory: Nomological network among cohesion, team mental models, coordination, and collective efficacy

    Get PDF
    I put forth a theoretical framework, namely Team Dynamics Theory (TDT), to address the need for a parsimonious yet integrated, explanatory and systemic view of team dynamics. In TDT, I integrate team processes and outputs and explain their relationships within a systemic view of team dynamics. Specifically, I propose a generative nomological network linking cohesion, team mental models, coordination, collective efficacy, and team outcomes. From this nomological conceptualization, I illustrate how myriad alternative models can be derived to account for variance in different working teams, each comprised of unique members, and embedded in singular contexts. I outline TDT’s applied implications for team development, the enhancement of team functioning, and the profiling of team resilience. I conclude by discussing how TDT’s ontological and nomological propositions can be tested through various theoretical inquiries, methodological approaches, and intervention-based studies

    A Description of Pseudorapidity Distributions of Charged Particles Produced in Au+Au Collisions at RHIC Energies

    No full text
    In heavy ion collisions, charged particles come from two parts: the hot and dense matter and the leading particles. In this paper, the hot and dense matter is assumed to expand according to the hydrodynamic model including phase transition and decouples into particles via the prescription of Cooper-Frye. The leading particles are as usual supposed to have Gaussian rapidity distributions with the number equaling that of participants. The investigations of this paper show that, unlike low energy situations, the leading particles are essential in describing the pseudorapidity distributions of charged particles produced in high energy heavy ion collisions. This might be due to the different transparencies of nuclei at different energies

    Projection pursuit-based Microcystis bloom warning in a Riverside Lake

    No full text
    A high-dimensional driving function for Microcystis bloom warning was developed, in which both the inhibition and promotion impacts on Microcystis growth activation energy are integrally considered. Five factors, including flow disturbance, temperature, light intensity, nutrient concentration, and biological inhibition, are embedded in the equation, which results in a high-dimensional problem. The projection pursuit principle was applied for dimension reduction to resolve the numerical problem, and an integrated hydroenvironmental model was established. Jinshan Lake, a typical riverside lake, was selected as the research area, and six bloom grades were determined for warning analysis. Based on the established model, the processes of Microcystis growth under varied hydrodynamic conditions were simulated. It was found that the established warning model could well reveal the Microcystis bloom processes in Jinshan Lake. The low-water year was characterized by the largest number of days on which Microcystis bloom might occur for its poor water exchange frequency; The areas where Microcystis bloom might occur in the flood seasons of high-water year, common-water year, and low-water year varied with the uneven-distributed dynamic conditions, which were respectively 0.15, 0.91, and 1.26 km2

    Separation of politics and morality: a commentary on Analects of Confucius

    No full text

    Quantifying wind-induced impacts on particulate Cu footprint in the Yangtze Estuary.

    No full text
    Under two wind conditions, a polar coordinated segmented quantification method (PCSQM) taking the easternmost point of Chongming Island (121°59'20″E, 31°29'38″N) as the origin of the coordinate was proposed to quantify wind-induced impacts on the heavy metal footprint emitted from four simulation sites on the main waterway of the Yangtze Estuary. One wind condition was that of a real wind field in 2019 called Case 1; the other one was a combination of monthly maximum wind speed selected from 1989 to 2019 called Case 2. In the comparison of these two conditions, the PCSQM was used to calculate the footprint excursion of four simulation sites mentioned, including three major urban sewage outlets and the upstream pollution source, represented by Xuliujing (XLJ) during the biological sensitive aggregation period of the Yangtze Estuary (BAPYE). The results showed that the Cu footprint was closer to Chongming Island and showed a trend of narrowing its coverage under Case2 compared with Case1. The Southeast section of the XLJ had the broadest width (83.46 km), while the Southwestern section of BLG had the narrowest width (3.52 km). Coincidentally, both the maximum (-29.99%) and the minimum excursion (-0.13%) were derived from XLJ, corresponding to its Southeast section and Southwest section
    corecore