8,027 research outputs found

    Model-Independent Predictions for Low Energy Isoscalar Heavy Baryon Observables in the Combined Heavy Quark and Large NcN_c Expansion

    Get PDF
    Model-independent predictions for excitation energies, semileptonic form factors and electromagnetic decay rates of isoscalar heavy baryons and their low energy excited states are discussed in terms of the combined heavy quark and large NcN_c expansion. At leading order, the observables are completely determined in terms of the known excitation energy of the first excited state of Λc\Lambda_c. At next-to-leading order in the combined expansion all heavy baryon observables can be expressed in a model-independent way in terms of two experimentally measurable quantities. We list predictions at leading and next-to-leading order.Comment: 7 pages, LaTe

    Excited Heavy Baryons and Their Symmetries III: Phenomenology

    Get PDF
    Phenomenological applications of an effective theory of low-lying excited states of charm and bottom isoscalar baryons are discussed at leading and next-to-leading order in the combined heavy quark and large NcN_c expansion. The combined expansion is formulated in terms of the counting parameter λ1/mQ,1/Nc\lambda\sim 1/m_Q, 1/N_c; the combined expansion is in powers of λ1/2\lambda^{1/2}. We work up to next-to-leading order. We obtain model-independent predictions for the excitation energies, the semileptonic form factors and electromagnetic decay rates. The spin-averaged mass of the doublet of the first orbitally excited sate of Λb\Lambda_b is predicted to be approximately 5920MeV5920 MeV. It is shown that in the combined limit at leading and next-to-leading order there is only one independent form factor describing ΛbΛcνˉ\Lambda_b \to \Lambda_c \ell \bar{\nu}; similarly, ΛbΛcνˉ\Lambda_b \to \Lambda_{c}^{*} \ell \bar{\nu} and ΛbΛc1νˉ\Lambda_b \to \Lambda_{c1} \ell \bar{\nu} decays are described by a single independent form factor. These form factors are calculated at leading and next-to-leading order in the combined expansion. The electromagnetic decay rates of the first excited states of Λc\Lambda_c and Λb\Lambda_b are determined at leading and next-to leading order. The ratio of radiative decay rates Γ(ΛcΛcγ)/Γ(Λb1Λbγ)\Gamma(\Lambda_{c}^{*} \to \Lambda_c \gamma) / \Gamma(\Lambda_{b1} \to \Lambda_b \gamma) is predicted to be approximately 0.2, greatly different from the heavy quark effective theory value of unity.Comment: 21 pages, 2 figure

    Co-Delivery of D-LAK Antimicrobial Peptide and Capreomycin as Inhaled Powder Formulation to Combat Drug-Resistant Tuberculosis

    Get PDF
    INTRODUCTION: The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) posed a severe challenge to tuberculosis (TB) management. The treatment of MDR-TB involves second-line anti-TB agents, most of which are injectable and highly toxic. Previous metabolomics study of the Mtb membrane revealed that two antimicrobial peptides, D-LAK120-A and D-LAK120-HP13, can potentiate the efficacy of capreomycin against mycobacteria. AIMS: As both capreomycin and peptides are not orally available, this study aimed to formulate combined formulations of capreomycin and D-LAK peptides as inhalable dry powder by spray drying. METHODS AND RESULTS: A total of 16 formulations were prepared with different levels of drug content and capreomycin to peptide ratios. A good production yield of over 60% (w/w) was achieved in most formulations. The co-spray dried particles exhibited spherical shape with a smooth surface and contained low residual moisture of below 2%. Both capreomycin and D-LAK peptides were enriched at the surface of the particles. The aerosol performance of the formulations was evaluated with Next Generation Impactor (NGI) coupled with Breezhaler®. While no significant difference was observed in terms of emitted fraction (EF) and fine particle fraction (FPF) among the different formulations, lowering the flow rate from 90 L/min to 60 L/min could reduce the impaction at the throat and improve the FPF to over 50%. CONCLUSIONS: Overall, this study showed the feasibility of producing co-spray dried formulation of capreomycin and antimicrobial peptides for pulmonary delivery. Future study on their antibacterial effect is warranted

    Thermal Softening and Degradation of Wood and Bark

    Get PDF
    A thermogravimetric analyzer was modified for the study of thermal softening of several Pacific Northwest woods and barks under constant load at a heating rate of 16 C/min.Several stages of thermal softening were found in barks and wood. Regardless of species, oven-dry samples start to soften at 180 C, with termination at about 500 C. The maximum rate of softening occurred at 380 C with an additional softening at 280 C for bark and 320 C for wood of hardwood species. An increase of moisture content decreased the softening temperature. When the moisture content of either material was higher than 10%, a new maximum rate of softening appeared at 160 C, while the 280 C, 320 C and 380 C maxima were retained. The absolute softening of wood and bark at 160 C increased with increasing moisture content to a limit at about 30%.In conjunction with results from infrared spectrum, X-ray diffraction and differential thermal analysis, the heating of oven-dry wood and bark was found to exhibit neither physical nor chemical changes at less than 200 C. The softening of wood and bark in the presence of water at temperature less than 200 C must occur only in the amorphous regions, with water serving as a plasticizer. Softening of wood and bark at more than 200 C is a combined response of physical and chemical degradations. These thermal responses of wood and bark, particularly bark, are expected to be important to the strength, dimensional stability, water resistance and fire-retardant properties of composite products

    Giant Modal Gain, Amplified Surface Plasmon Polariton Propagation, and Slowing Down of Energy Velocity in a Metal-Semiconductor-Metal Structure

    Full text link
    We investigated surface plasmon polariton (SPP) propagation in a metal-semiconductor-metal structure where semiconductor is highly excited to have optical gain. We show that near the SPP resonance, the imaginary part of the propagation wavevector changes from positive to hugely negative, corresponding to an amplified SPP propagation. The SPP experiences a giant gain that is 1000 times of material gain in the excited semiconductor. We show that such a giant gain is related to the slowing down of average energy propagation in the structur

    Experimental observation of negative differential resistance from an InAs/GaSb interface

    Get PDF
    We have observed negative differential resistance at room temperature from devices consisting of a single interface between n-type InAs and p-type GaSb. InAs and GaSb have a type II staggered band alignment; hence, the negative differential resistance arises from the same mechanism as in a p+-n+ tunnel diode. Room-temperature peak current densities of 8.2×10^4 A/cm^2 and 4.2×10^4 A/cm^2 were measured for structures with and without undoped spacer layers at the heterointerface, respectively

    Nephrogenic systemic fibrosis risk and liver disease.

    Get PDF
    Objective. Evaluate the incidence of nephrogenic systemic fibrosis (NSF) in patients with liver disease in the peritransplant period. Materials and Methods. This IRB approved study retrospectively reviewed patients requiring transplantation for cirrhosis, hepatocellular carcinoma (HCC), or both from 2003 to 2013. Records were reviewed identifying those having gadolinium enhanced MRI within 1 year of posttransplantation to document degree of liver disease, renal disease, and evidence for NSF. Results. Gadolinium-enhanced MRI was performed on 312 of 837 patients, including 23 with severe renal failure (GFR < 30 mL/min/1.73 cm(2)) and 289 with GFR > 30. Two of 23 patients with renal failure developed NSF compared to zero NSF cases in 289 patients with GFR > 30 (0/289; P < 0.003). High dose gadodiamide was used in the two NSF cases. There was no increased incidence of NSF with severe liver disease (1/71) compared to nonsevere liver disease (1/241; P = 0.412). Conclusion. Renal disease is a risk factor for NSF, but in our small sample our evidence suggests liver disease is not an additional risk factor, especially if a low-risk gadolinium agent is used. Noting that not all patients received high-risk gadolinium, a larger study focusing on patients receiving high-risk gadolinium is needed to further evaluate NSF risk in liver disease in the peritransplant period

    Remarks on the extension of the Ricci flow

    Full text link
    We present two new conditions to extend the Ricci flow on a compact manifold over a finite time, which are improvements of some known extension theorems.Comment: 9 pages, to appear in Journal of Geometric Analysi
    corecore