38,625 research outputs found

    Quantum pumping in graphene nanoribbons at resonant transmission

    Full text link
    Adiabatic quantum charge pumping in graphene nanoribbon double barrier structures with armchair and zigzag edges in the resonant transmission regime is analyzed. Using recursive Green's function method we numerically calculate the pumped charge for pumping contours encircling a resonance. We find that for armchair ribbons the whole resonance line contributes to the pumping of a single electron (ignoring double spin degeneracy) per cycle through the device. The case of zigzag ribbons is more interesting due to zero-conductance resonances. These resonances separate the whole resonance line into several parts, each of which corresponds to the pumping of a single electron through the device. Moreover, in contrast to armchair ribbons, one electron can be pumped from the left lead to the right one or backwards. The current direction depends on the particular part of the resonance line encircled by the pumping contour.Comment: 6 pages, 5 figures. This is an author-created, un-copyedited version of an article accepted for publication in EPL. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1209/0295-5075/92/4701

    Investigation of the energy dependence of the orbital light curve in LS 5039

    Full text link
    LS 5039 is so far the best studied γ\gamma-ray binary system at multi-wavelength energies. A time resolved study of its spectral energy distribution (SED) shows that above 1 keV its power output is changing along its binary orbit as well as being a function of energy. To disentangle the energy dependence of the power output as a function of orbital phase, we investigated in detail the orbital light curves as derived with different telescopes at different energy bands. We analysed the data from all existing \textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most up-to-date orbital light curves at hard X-ray energies. In the γ\gamma-ray band, we carried out orbital phase-resolved analysis of \textit{Fermi}-LAT data between 30 MeV and 10 GeV in 5 different energy bands. We found that, at ≲\lesssim100 MeV and ≳\gtrsim1 TeV the peak of the γ\gamma-ray emission is near orbital phase 0.7, while between ∼\sim100 MeV and ∼\sim1 GeV it moves close to orbital phase 1.0 in an orbital anti-clockwise manner. This result suggests that the transition region in the SED at soft γ\gamma-rays (below a hundred MeV) is related to the orbital phase interval of 0.5--1.0 but not to the one of 0.0--0.5, when the compact object is "behind" its companion. Another interesting result is that between 3 and 20 GeV no orbital modulation is found, although \textit{Fermi}-LAT significantly (∼\sim18σ\sigma) detects LS 5039. This is consistent with the fact that at these energies, the contributions to the overall emission from the inferior conjunction phase region (INFC, orbital phase 0.45 to 0.9) and from the superior conjunction phase region (SUPC, orbital phase 0.9 to 0.45) are equal in strength. At TeV energies the power output is again dominant in the INFC region and the flux peak occurs at phase ∼\sim0.7.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    Spectrum for Heavy Quankonia and Mixture of the Relevant Wave Functions within the Framework of Bethe-Salpeter Equation

    Full text link
    Considering the fact that some excited states of the heavy quarkonia (charmonium and bottomonium) still missing in experimental observations and potential applications of the relevant wave functions of the bound states, we re-analyze the spectrum and the relevant wave functions of the heavy quarkonia within the framework of Bethe-Salpeter (B.S.) equation with a proper QCD-inspired kernel. Such a kernel for the heavy quarkonia, relating to potential of non-relativistic quark model, is instantaneous, so we call the corresponding B.S. equation as BS-In equation throughout the paper. Particularly, a new way to solve the B.S. equation, which is different from the traditional ones, is proposed here, and with it not only the known spectrum for the heavy quarkonia is re-generated, but also an important issue is brought in, i.e., the obtained solutions of the equation `automatically' include the 'fine', 'hyperfine' splittings and the wave function mixture, such as S−DS-D wave mixing in JPC=1−−J^{PC}=1^{--} states, P−FP-F wave mixing in JPC=2++J^{PC}=2^{++} states for charmonium and bottomonium etc. It is pointed out that the best place to test the wave mixture probably is at ZZ-factory (e+e−e^+e^- collider running at ZZ-boson pole with extremely high luminosity).Comment: 26 pages, 8 figure

    A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus

    Full text link
    We present a multiwavelength study of an atypical submillimeter galaxy in the GOODS-North field, with the aim to understand its physical properties of stellar and dust emission, as well as the central AGN activity. Although it is shown that the source is likely an extremely dusty galaxy at high redshift, its exact position of submillimeter emission is unknown. With the new NOEMA interferometric imaging, we confirm that the source is a unique dusty galaxy. It has no obvious counterpart in the optical and even NIR images observed with HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot be fully ruled out (at 90% confidence interval). Explaining its unusual optical-to-NIR properties requires an old stellar population (~0.67 Gyr), coexisting with a very dusty ongoing starburst component. The latter is contributing to the FIR emission, with its rest-frame UV and optical light being largely obscured along our line of sight. If the observed fluxes at the rest-frame optical/NIR wavelengths were mainly contributed by old stars, a total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral analysis suggests that this galaxy harbors a heavily obscured AGN with N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44 erg/s, which places this object among distant type 2 quasars. The radio emission of the source is extremely bright, which is an order of magnitude higher than the star-formation-powered emission, making it one of the most distant radio-luminous dusty galaxies. The combined characteristics of the galaxy suggest that the source appears to have been caught in a rare but critical transition stage in the evolution of submillimeter galaxies, where we are witnessing the birth of a young AGN and possibly the earliest stage of its jet formation and feedback.Comment: 13 pages in printer format, 10 figures, 1 table, accepted for publication in the A&

    Feature extraction of volume data based on multi-scale representation

    Get PDF
    • …
    corecore