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Abstract

In this paper, we present a novel algorithm that can detect and ex-
tract salient points as features in 3-D volume datasets. This algo-
rithm extracts not only the locations of feature points, but also finds
out the scales at which the features are most significant. It applies
the scale-space theory by adaptively processing the input volume in
a few discrete scales. The features points, as well as their scales, de-
tected can be used for subsequent processing, such as content-based
volume data authentication and content-based volume rendering.

We have implemented the algorithm and tested its effectiveness
on several volume datasets. Some optimization has also been done
on time-consuming intermediate steps to speed up the feature de-
tection process.
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ometry and Object Modeling; I.4.6 [Image Processing]: Segmenta-
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1 Introduction

Feature detection in 3-D volume data is important for many ap-
plications such as content-based volume data authentication and
content-based volume rendering. However, it is not as intuitive as
that in 2-D image, since there is no specific definition on what a
feature is in the context of volume data. Aiming to design a tech-
nique as a pre-processing step for other volume-based applications,
we propose a volume feature extraction method based on the scale-
space representation. We define features, or 3-D salient points, as
grey-level local extrema. Intuitively, grey-level local extrema in a
volume dataset are blob-like structures which specify both the lo-
cation and the size (or scale) of each feature point.

Although feature detection based on surface structures can be
useful to applications like surface reconstruction, it is not so appli-
cable to some content-based techniques. The major problems are:

1. Features in 3-D volume data are not as commonly agreed upon
as those in 2-D image data. It is relatively unclear what sur-
faces really are when the content of a volume dataset is noisy.

Isosurfaces in volume data are intuitive, but they do not nec-
essarily capture the actual content.

2. Some algorithms for 2-D cases can be computationally expen-
sive, which will become a major concern when ported directly
to 3-D cases. This is because data sizes of volume data are
usually much larger than those of images.

3. In terms of feature detection, we may want not only features
with high intensity values, which are similar to edges or tex-
tures in the 2-D case, but also parts with very low intensity
values (or holes). In this context, describing holes with the
surrounding surface may not seem intuitive, especially for
volume data visualization, etc.

We have implemented the algorithm and tested its effectiveness
on several volume datasets. Some optimization has also been done
on time-consuming intermediate steps to speed up the feature de-
tection process.

The remaining part of the paper is organized as follows: First, in
Section 2, we discuss the multi-scale representation of N-D signal.
It is a generalization from the representation of the 1-D signal. Sec-
ond, in Section 3, we describe how to approximate 3-D Gaussian
kernels for efficient computing. Third, in Section 4, we extend the
notion of salient points to 3-D volumes. Next, in Section 5, we pro-
pose the algorithm to extract feature points of 3-D volumes. Then,
in Section 6, we show the results from our implementation. In Sec-
tion 7, we brief the efforts of the related work before concluding the
paper in Section 8.

2 Multi-Scale Representation

The scale-space theory was originated from an analogue of how we
perceive the objects around us. It is intuitive that objects in the
world and details in images only exist as meaningful entities over
a limited ranges of scale. This is oppose to the ideal mathematical
entities like “points,” “lines,” etc., which appear exactly the same
regardless the scales of observation.

The main idea of creating a multi-scale representation of a signal
is by generating a one-parameter family of derived signals from the
original signal. As illustrated in Figure 1, details are suppressed
successively from the original signal to coarser levels of scales.
Thus, the key here is to define a mechanism that can systematically
simplify the original signal and remove finer-scale details, which
should be available at any level of scale.

Scale-space for N-D signals: Following the formulation for 1-D
continuous signal[Lindeberg 1994], we can generalize the defini-
tion to a framework for N-D continuous signals:

Given a signal f :
� N � �

, the scale-space representation
L :

� N � ��� � �
is defined such that the representation at zero

scale is equal to the original signal

L ��� ; 0 �
	 f � (1)
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Figure 1: An illustration of the multi-scale representation of a 2-D
signal.

and the representation at coarser scales is given by convolution with
Gaussian kernels of increasing width,

L ��� ; s �
	 g ��� ; s �� f � (2)

In terms of explicit integrals, the result of the convolution operation
‘ � ’ is written

L � x; s ��	��
ξ ��� N

g � ξ ; s � f � x � ξ � dξ � (3)

where x 	�� x1 ��������� xN � T � � N , and g :
� N � � ����� 0 � � �

is the
N-D Gaussian kernel of standard deviation σ 	! s

g � x;s ��	 1� 2πs � N " 2 e #�$ xT x %&" 2s � (4)

Let’s illustrate multi-scale representation of a 2-D image using
Gaussian kernels of different width. The results are shown in Fig-
ure 2. Note that the finer-scale details of the mandrill face is suc-
cessively suppressed, such that the eyes, the bright parts of the face,
and the dark parts of the cheeks become more and more obvious.

3 Approximating a sequence of 3-D
Gaussian Kernels

To find the feature in the scale-space, we need to first compute the
scale-space representation at various discrete scales, s0 � s1 ��������� sd .
Usually, the scales is in the form of si 	 si where s ' 1 is some
predefined constant.

To compute these scales directly from the definition is computa-
tional intensive, especially in 3-D. The time complexity of a direct
computation of just one scale is at least Ω � v3k3 � , where v3 and k3

is the size the volume (in term of number of voxels) and the kernel
respectively. Because the support of the Gaussian is infinite, the
size of the kernel should be v. Although the kernel at scale s can
be well-approximated by a box of width 10  s, even in this reduced
size, the computation is still intensive.

It is possible to speedup computation by approximating the ker-
nel in another way. For example, [Rau and McClellan 1997] ex-
tends a well-known approximation in 1-D to 2-D and give the rela-
tionship between the computing time (in term of number of arith-
metic operations) and approximation accuracy. Generalization the
idea to 3-D is relatively straight-forward.

In our problem, instead one single scale, we are required to com-
pute multiples scales. Thus, using the approximation independently
in each scale might repeated certain computation. In this imple-
mentation, given the required scales, we study them carefully and
design a sequence of approximations that share intermediate com-
putation across the scales. In other words, we try to optimize the
overall cost, rather than the cost in each scale.

(a) The original of the
mandrill face (512 ( 512).

(b) The mandrill face con-
volved with Gaussian ker-
nels of width 4.

(c) The mandrill face con-
volved with Gaussian ker-
nels of width 16.

(d) The mandrill face con-
volved with Gaussian ker-
nels of width 32.

(e) The mandrill face con-
volved with Gaussian ker-
nels of width 64.

(f) The mandrill face con-
volved with Gaussian ker-
nels of width 128.

Figure 2: Successive smoothing of a grey-level image (mandrill
face) with 2-D Gaussian kernels.
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Figure 3: Approximating 1-D Gaussian with a series of convolu-
tions with rectangular kernel.

To illustrate our method, let us start from the 1-D case. It is well-
known that a Gaussian kernel at a particular scale can be approx-
imate by a spline function, which can be obtained by convoluting
a size m rectangular kernel k number of times. A rectangular ker-
nel of size m consists of m consecutive 1’s. Let denote this filter
as ) 1 * m, and the spline function as ) 1 * km. Note that there are many
possible pairs of m and k that satisfy a given accuracy. As shown in
Figure 3, the dotted line is the sampled 1-D Gaussian function with
sample points marked by black dots. The other solid lines are ap-
proximated functions with a series convolutions with a rectangular
kernel. After 3 convolutions, we can observe that the 1-D func-
tion already approximates the sampled Gaussian function with very
high degree of accuracy.

It is also known that convoluting with a rectangular kernel ) 1 * m
can be done very efficiently, in fact, in only 2 arithmetic operation
(one addition and one subtraction) per sample. Interestingly, the
amount of operations required is independent of the size m. Note
that repeatedly applying the rectangular kernel k times is equivalent
to convoluting with ) 1 * km, which required only 2k arithmetic opera-
tions. Given the scale s and required approximation accuracy, we
can determined the optimal k and the corresponding m.

Similarly, we can approximate 3-D Gaussian kernels by a series
of convolutions with “box kernels” of different sizes, which consist
of a cube of 1’s in the center and 0’s elsewhere.

Now, given the required scale s0 � s1 ��������� sd , a possible speedup
is to treat each scale individually. However, we can obtain further
speedup by combining intermediate results. For example, if, for s0
and s3, we choose the approximation ) 1 * 45 and ) 1 * 75, then the number
of operation is only 2 � 7 per sample. This is an improvement from
computing both separately, which required 2 � 4 + 2 � 7 operations.
Although ) 1 * 45 and ) 1 * 75 may not be optimal in each scale, the overall
cost maybe better than combining the optimal cost in each individ-
ual scale. In current implementation, we studied the given scales
and carefully select the box filters that share intermediate results. It
would be interesting to give an algorithm that compute the overall
optimal solution.

Special care must be taken in implementation. We further opti-
mize the way the array indices are accessed in the program, which
reduce index computations as well as buffering time.

Figure 4: Illustration of the fast box convolution optimization.

4 Volume Features as Scale-Space
Salient Points

Similar to the definition of salient points in the 2-D images [Lin-
deberg 1990], we extend the notion of salient points to 3-D vol-
umes. The scale-space representation L � x; s � for a volume is de-
termined by a kernel g :

� 3 � �
. A volume at scale s, L ��� ; t �

is the convolution of the original volume with the dilated kernel
gs 	,� 1 - s � g ��� -� s � . By applying Gaussian kernel here, we have a
special case of the N-D equation

L � x;s �.	 �
f � gs �� x �

	 1� 2πs � 3 " 2 � ξ ��� 3
f � x � ξ � e #0/ x / 2 " 2sdξ � (5)

5 Feature Detection in Volumes

The 3-D feature detection and extraction algorithm is a direct ex-
tension from the 2-D counterpart from higher-level point of view.
While they look the same in the first glance, in the implementation
details, however, the 3-D case does require more considerations and
slightly different implementation than the original 2-D case.

The basic algorithm for volume feature detection is outlined as
follows:

1. Given a volume dataset V ,

2. for s 	 s0 to s1,
Convolve V with a Gaussian-like kernel specified by

scale s;
Keep each smoothed volume Vs;

end for;

3. Look for local maxima in both the spatial domain in each Vs
and in the scale domain across adjacent scales;

4. Combine points of local maxima that are too close to each
other;

5. Sort all feature points in order of their strengths, and pick the
strongest n points as output.

6 Experiment Results

Now, we show the feature extraction results using the scale-space
method. We first show the results of a 2D example (Figure 5).
The locations of the salient points are the centers of the circles; the
scales t are loosely represented by the radii of the circles; the ab-
solute values of strengths 1m 1 are loosely represented by the widths
of the circles’ borders. Note that since only the strongest 30 salient
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Figure 5: Scale-space salient points superimposed onto a dimmed
version of the original mandrill face.

points are shown, their strengths do not differ much from one an-
other.

Similar to 2D image, we show the extracting results of 3D vol-
ume data. They are shown in Figures 6, 7, 8 and 9. Brighter parts in
the images denote areas with larger grey-level voxel values. Note
that how the salient points match portions of the original volume
where grey-level voxel values differ from the surrounding area. In
Figures 7 and 9, the locations of the salient points are the centers
of the circles; the scales t are loosely represented by the radii of
the circles; the absolute values of strengths 1m 1 are represented pro-
portionally by the widths of the circles’ borders (dotted line denote
positive strength, solid line denote negative strength). Note that
only the strongest 15 features are shown.

7 Related Work

Many ideas from 2-D cases are applicable for and easy to extend to
handle their 3-D counterparts. Thus, it is intuitive to extend edges
in 2-D cases to edges in 3-D cases which turn out to be surfaces
[Audette et al. 1999].

It is not surprise to see that many proposed feature detection
techniques aim to extract surface structures in volume data, and
attempt to perform segmentation of the input volume based on sur-
faces extracted. Most common techniques in 2-D cases, such as
Laplacian of Gaussian [Bomans et al. 1990], non-maxima suppres-
sion [Pratt 1991], functional fitting [Morgenthaler and Rosenfeld
1981] have been ported to handle 3-D cases.

Although the implementation is easily approximated in discrete
domain like volume data, it bears a few disadvantages:

1. Threshold values and the width of the masks used in convolu-
tion must be manually chosen. This is a problem common to
all gradient-based methods since both the threshold value and
the width of the convolution mask are highly sensitive to any
change of the width of the gradients in the input data.

2. Corners are often missed because the gradient values at cor-
ners are usually relatively small. This problem imposes diffi-
culties for applications such as junction detection.

3. Odd symmetric filters, for example, a first derivative opera-
tor, can find only the step-like features, which actually misses

Figure 6: Feature points detected in a volume dataset with a rectan-
gular cube. Note that all of the tunnel in the center, the four walls
of the tube and the tube’s body are circled as features.

ridge-like structures (so-called bar features). This can be
solved by applying a even symmetric filter and look for peaks,
instead of zero-crossings, from the output.

Therefore, we can observe that classical differential edge feature
detection schemes suffer from both false positives and false nega-
tives.

8 Conclusion and Future Work

In this paper, a feature detection technique for 3-D volume data was
proposed. Using our method, both the position and the strength of
feature points can be derived.

We are working on a framework of content-based volume data
authentication. Our method uses scale-space representation for au-
tomatic feature extraction, as reported here, together with wavelet-
based foveation [Chang et al. 2000], and encryption to achieve a
good performance. We are still refining the framework and con-
ducting the experiment study.
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