3,118 research outputs found

    Evolution of Compact Stars and Dark Dynamical Variables

    Get PDF
    This work is aimed to explore the dark dynamical effects of f(R,T)f(R,T) modified gravity theory on the dynamics of compact celestial star. We have taken the interior geometry as spherical star which is filled with imperfect fluid distribution. The modified field equations are explored by taking a particular form of f(R,T)f(R,T) model, i.e., f(R,T)=f1(R)+f2(R)f3(T)f(R,T)=f_1(R)+f_2(R)f_3(T). These equations are then utilized to formulate the well-known structure scalars under the dark dynamical effects of this higher order gravity theory. Also, the evolution equations for expansion and shear are formulated with the help of these scalar variables. Further, all this analysis have been made under the condition of constant RR and TT. We found a crucial significance of dark source terms and dynamical variables on the evolution and density inhomogeneity of compact objects.Comment: 18 pages, 4 figures, version accepted for publication in European Physical Journal

    Influence of f(R)f(R) Models on the Existence of Anisotropic Self-Gravitating Systems

    Full text link
    This paper aims to explore some realistic configurations of anisotropic spherical structures in the background of metric f(R)f(R) gravity, where RR is the Ricci scalar. The solutions obtained by Krori and Barua are used to examine the nature of particular compact stars with three different modified gravity models. The behavior of material variables is analyzed through plots and the physical viability of compact stars is investigated through energy conditions. We also discuss the behavior of different forces, equation of state parameter, measure of anisotropy and Tolman-Oppenheimer-Volkoff equation in the modeling of stellar structures. The comparison from our graphical representations may provide evidences for the realistic and viable f(R)f(R) gravity models at both theoretical and astrophysical scale.Comment: 23 pages, 13 figures, version accepted for publication in European Physical Journal

    Influence of Electric Charge and Modified Gravity on Density Irregularities

    Full text link
    This work aims to identify some inhomogeneity factors for plane symmetric topology with anisotropic and dissipative fluid under the effects of both electromagnetic field as well as Palatini f(R)f(R) gravity. We construct the modified field equations, kinematical quantities and mass function to continue our analysis. We have explored the dynamical quantities, conservation equations and modified Ellis equations with the help of a viable f(R)f(R) model. Some particular cases are discussed with and without dissipation to investigate the corresponding inhomogeneity factors. For non-radiating scenario, we examine such factors with dust, isotropic and anisotropic matter in the presence of charge. For dissipative fluid, we investigate the inhomogeneity factor with charged dust cloud. We conclude that electromagnetic field increases the inhomogeneity in matter while the extra curvature terms make the system more homogeneous with the evolution of time.Comment: 28 pages, no figure, version accepted for publication in European Physical Journal

    Seismic vulnerability assessment and evaluation of high rise buildings in Islamabad

    Get PDF
    Primarily the aim of this research is to carry out seismic evaluation study of buildings structures in Islamabad in order to propose basic guidelines and suggestions for Pakistan Code. Knowing the important nature of the subject, the earthquake based organizations are serious to compile a document for seismic threatened countries and areas. It is aimed that the document will work as a guideline source for the seismic evaluation, calculation and assessment of strength, behavior and expected performance and also the safety of already existing buildings. This study is based on review of already available documents on seismic vulnerability and evaluation of present buildings at different sites is carried out in order to know the key components of this very procedure so that it can be used in Pakistan and also in other developing countries as well. This would not only be robust, safe and reliable, but also can be convenient to use within the domain of available resources. ASCE 31-03 guidelines among the available documents are considered to be a suitable and the most reliable for to be in Pakistan

    Role of f(R,T,RμνTμν)f(R,T,R_{\mu\nu}T^{\mu\nu}) Model on the Stability of Cylindrical Stellar Model

    Full text link
    The aim of this paper is to investigate the stable/unstable regimes of the non-static anisotropic filamentary stellar models in the framework of f(R,T,RμνTμν)f(R,T,R_{\mu\nu}T^{\mu\nu}) gravity. We construct the field equations and conservation laws in the perspective of this gravity. The perturbation scheme is applied to analyze the behavior of a particular f(R,T,RμνTμν)f(R,T,R_{\mu\nu}T^{\mu\nu}) cosmological model on the evolution of cylindrical system. The role of adiabatic index is also checked in the formulations of instability regions. We have explored the instability constraints at Newtonian and post-Newtonian limits. Our results reinforce the significance of adiabatic index and dark source terms in the stability analysis of celestial objects in modified gravity.Comment: 29 pages, no figure, version accepted for publication in European Physical Journal

    Existence of Compact Structures in f(R,T)f(R,T) Gravity

    Full text link
    The present paper is devoted to investigate the possible emergence of relativistic compact stellar objects through modified f(R,T)f(R,T) gravity. For anisotropic matter distribution, we used Krori and Barura solutions and two notable and viable f(R,T)f(R,T) gravity formulations. By choosing particular observational data, we determine the values of constant in solutions for three relativistic compact star candidates. We have presented some physical behavior of these relativistic compact stellar objects and some aspects like energy density, radial as well as transverse pressure, their evolution, stability, measure of anisotropy and energy conditions.Comment: 27 pages, 13 figures, version accepted for publication in European Physical Journal
    corecore