
Eur. Phys. J. C (2017) 77:690
DOI 10.1140/epjc/s10052-017-5236-4

Regular Article - Theoretical Physics

Evolution of compact stars and dark dynamical variables

M. Z. Bhatti1,a, Z. Yousaf1,b, M. Ilyas2,c

1 Department of Mathematics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
2 Centre for High Energy Physics, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan

Received: 4 July 2017 / Accepted: 15 September 2017 / Published online: 19 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract This work aims to explore the dark dynami-
cal effects of the f (R, T ) modified gravity theory on the
dynamics of a compact celestial star. We have taken the
interior geometry of a spherical star which is filled with an
imperfect fluid distribution. The modified field equations are
explored by taking a particular form of the f (R, T ) model,
i.e. f (R, T ) = f1(R) + f2(R) f3(T ). These equations are
utilized to formulate the well-known structure scalars under
the dark dynamical effects of this higher-order gravity the-
ory. Also, with the help of these scalar variables, the evolu-
tion equations for expansion and shear are formulated. The
whole analysis is made under the condition of a constant R
and T . We found a crucial significance of dark source terms
and dynamical variables on the evolution and density inho-
mogeneity of compact objects.

1 Introduction

After many observational astronomical consequences com-
ing from Supernovae Type Ia, BICEP, and cosmic microwave
background radiation [1–3], it has been affirmed that our
cosmos is in an accelerated expanding phase. Dark energy
(DE) is thought to be a reliable source behind this enig-
matic behavior of the universe. The modified gravity the-
ories are believed to belong to the mathematical tools to deal
with its nature. These theories are explored by modifying the
Einstein–Hilbert (EH) action and they have been extensively
applied to the study of the nature of DE, which may address
accelerating cosmic expansion [4–7].

Nojiri and Odintsov [8,9] introduced some modified grav-
itational models for the complete description of early- and
late-time evolutionary universe eras. The simplest gener-
alization of GR includes the f (R) gravity in which R is
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the Ricci scalar. Harko et al. [10] modified this theory by
invoking corrections coming from the trace of the energy-
momentum tensor (T ) in the EH action. This theory is known
as f (R, T ) gravity theory. The motivation of this theory
stems from the fact that the influences introduced by quantum
effects or a dark non-ideal relativistic matter environment are
being invoked in this analysis.

Houndjo [11] obtained some observationally consistent
f (R, T ) models that could assist well enough in analyzing
the behavior of matter dominated universe epochs. Baffou et
al. [12] used a perturbation scheme to investigate the viabil-
ity of a few cosmic models by taking de Sitter and power law
formulations. Bamba et al. [13] checked the role of the dark
source terms coming from the modified gravity models on the
dynamics of the accelerating and expanding universe. Durrer
and Maartens [14] presented some results to the credibility of
GR in terms of f (R) gravity. Gravitational stabilities of rel-
ativistic compact structures were examined in f (R) gravity
by [15–17]. Yousaf et al. examined the rate of the gravita-
tional implosion with the help of various modified gravity
models for the planar [18–20], spherical [21–28] as well as
cylindrical [29–31] relativistic objects. Moraes et al. [32] cal-
culated the modified hydrostatic expression for investigating
the dynamical features of some strange and neutron stars with
the help of the f (R, T ) = R + 2λT model.

Herrera et al. [33,34] discussed the gravitational implo-
sion of the cylindrical as well as spherical collapse via some
specific boundary conditions. Tewari et al. [35] investigated
the spherical anisotropic collapse and presented a new class
of relativistic models that could be helpful to understand var-
ious dynamical features of stellar models. Sharif and Bhatti
[36] examined the role of the adiabatic index as well as the
physical parameters on the onset of the gravitational col-
lapse of axially symmetric self-gravitating systems. Sharif
and Yousaf [37,38] considered the problem of the dynamical
instability of celestial bodies in modified gravity and found
the role of f (R, T ) and f (R) in the subsequent phases of
collapsing systems. Recently, Yousaf et al. [39,40] joined
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the interior non-static anisotropic cylindrical system with the
exterior Einstein–Rosen bridge and investigated the impact
of the modified corrections on the onset of dynamical insta-
bility.

The inhomogeneous state is found to be the predeces-
sor in the process of gravitational collapse for the initially
homogeneous stellar structures. It is pertinent to mention
that some dynamical properties of self-gravitating systems
can be understood by investigating the behavior of pres-
sure anisotropy, tidal forces, inhomogeneous energy density
(IED), etc.. There has been extensive work related to check
the cause of an IED over the surface of regular compact
objects. Penrose and Hawking [41] were among the pioneers
exploring this. They found the Weyl tensor as a key entity
in the emergence of the IED in the evolution of spherically
symmetric objects. Herrera et al. [42] calculated some factors
responsible for creating an IED over the anisotropic stellar
spheres and inferred that pressure anisotropy may lead to
developing a naked singularity (NS) for the system. Virb-
hadra et al. [43–45] provided a mathematical platform under
which one can differentiate between the formation of NS and
black holes.

Herrera et al. [46] described the gravitational arrow of
time for the dissipative compact systems by making a relation
between the Weyl invariant, the pressure anisotropy and the
IED. Herrera et al. [47] examined the influences of the IED
on the expressions of shear and expansion evolutions in the
presence of an electromagnetic field. Yousaf et al. [48] cov-
ered this problem for spherical radiating geometries in the
modified gravitational theory and concluded that a special
combination of a f (R, T ) gravity model could significantly
interfere in the appearance of an IED. Bhatti et al. [49,50]
looked into the reasons behind the maintenance of the IED
against the gravitational collapse of relativistic interiors in
modified gravity. Herrera et al. [51] and Herrera [52] con-
sidered the case of a non-comoving coordinate system and
checked the reasons for the start up of the spherical collapse
by evaluating transport equations. Yousaf et al. [53] modified
these results by invoking Palatini f (R) corrections. Recently,
Herrera [54] illustrated the answer to the question why obser-
vations of tilted congruences show a dissipative process in
stellar interiors which seem to be isentropic for non-tilted
observers.

This paper is a continuation of previous work presented by
Herrera et al. [47] in order to check the role of the f (R, T ) =
R + λR2T 2 cosmic model in the formulations of structure
scalars, shear and expansion evolution equations. The paper
is outlined as follows. In the next section some essentials,
required to understand the f (R, T ) gravity as well as the
spherical distribution of radiating fluids, are described. In
Sect. 3, we shall compute a modified form of structure scalars
in the realm of R+λR2T 2 corrections. We shall also examine
the role of shear and expansion evolution equations in this

gravity. Section 4 demonstrates the role of scalar parameters
in the emergence of the IED of the dust relativistic cloud in
today values of R and T . A brief description as well as the
conclusion are reported in the last section.

2 Radiating sphere and f (R, T ) gravity

In the f (R, T ) gravity the EH action can be written [10]

A =
∫

d4x[ f (R, T ) + LM ]√−g, (1)

where g, T are the traces of the metric and usual energy-
momentum tensors respectively, while LM is the Lagrangian
matter. In the following calculations we shall use relativistic
units, with 8πG = c = 1. After considering LM = μ (where
μ is the fluid energy density) and applying variations in the
above modified action with gαβ , the field equations can be
written

Gλν = Tλν
eff, (2)

where

Tλν
eff =

[
− μgλν fT (R, T ) + T (m)

λν (1 + fT (R, T ))

+
(
fR(R, T ) − f (R, T )

R

)
R

2

+ (∇λ∇ν + gλν�) fR(R, T )

]
1

fR(R, T )
.

In Eq. (2), Gαβ is the Einstein tensor, while Tλν
eff is widely

known as the effective form of the energy-momentum ten-
sor. However, ∇α , �, fT (R, T ) and fR(R, T ) stand for
the covariant derivative, ∇α∇α , and partial derivatives with
respect to R and T , respectively. One can find a visualized
and detailed illustration of the field equations (2) in Refs.
[10] and [48].

Let us consider an irrotational diagonal non-static form of
spherically symmetric metric

ds2 = H2(t, r)dr2−A2(t, r)dt2+C2(dθ2+sin2 θdφ2), (3)

in which A, B and C depend on t and r . It is assumed that
the above geometry is being coupled with a radiating shear
locally anisotropic fluid represented by

Tλν = μVλVν + P⊥hλν + 	χλχν − 2ησλν

+ εlλlν + q(χνVλ + χλVν), (4)

where ε is the radiation density, qβ is the heat flux, 	 ≡ Pr −
P⊥, hαβ, σαβ are the projection and shear tensor, P⊥, Pr are
the tangential and radial pressure elements, μ is the energy
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density and η is the coefficient of the shear viscosity. The
projection tensor is defined as hαβ = gαβ + VαVβ , while
χβ and lβ are the radial and null four-vectors, respectively.
Under a comoving coordinate system, the definitions of these
vectors are found to be V ν = 1

A δν
0 , χν = 1

C δν
1 , lν = 1

A δν
0 +

1
B δν

1 , qν = q(t, r)χν . In order to maintain the comoving
coordinate frame, these obey the relations

χνχν = 1, V νVν = −1, χνVν = 0,

lνVν = −1, V νqν = 0, lνlν = 0.

With reference to Eq. (3), the shear tensor and the scalar
corresponding to the expansion tensor are

σ A =
(
Ḣ

H
− Ċ

C

)
, �A =

(
Ḣ

H
+ 2Ċ

C

)
,

where an overdot means ∂
∂t .

In order to have an observationally consistent gravitational
theory, an appropriate f (R, T ) gravity model is needed. In
this perspective, we take the following combinations of a
f (R, T ) model [55]:

f (R, T ) = f1(R) + f2(R) f3(T ). (5)

This form of the model description states a minimal back-
ground of matter and geometry coupling, thereby indicat-
ing higher-order corrections in the well-known f (R) the-
ory. Realistic f (R, T ) models can be achieved by picking
any Ricci scalar function from [56] along with any linear
form of the function of T . In this context we shall take
f (R, T ) = R + λR2T 2, where λ � 1. The dynamics pro-
posed by Einstein can be found by setting λ = 0 in the above
model. The f (R, T ) field equations for Eqs. (3)–(5) are

G00 = A2

1 + 2RλT 2

[
μ + ε + 2TλR2 − λ

2
T 2R2 + ϕ00

A2

]
,

(6)

G01 = AH

1 + 2RλT 2

[
− (1 + 2TλR2)

1 + 2RλT 2 (q + ε) + ϕ01

AH

]
, (7)

G11 = H2

1 + 2RλT 2

[
μ2TλR2 + (1 + 2TλR2)

× (Pr + ε − 4

3
ησ) + λ

2
T 2R2 + ϕ11

H2

]
, (8)

G22 = C2

1 + 2RλT 2

[
(1 + 2TλR2)(P⊥

+ 2

3
ησ) + μ2TλR2 + λ

2
T 2R2 + ϕ22

C2

]
, (9)

where

ψ00 = 2∂t t fR + ∂t fR

(
−2

Ȧ

A
+ Ḣ

H
+ 2

Ċ

C

)

+ ∂r fR
H2

(
−2AA′ + A2 H

′

H
− 2A2C

′

C

)
,

ψ11 = −H2

A2 ∂t t fR + ∂t fR
A2

(
−2H2 Ċ

C
+ H2 Ȧ

A
− 2H Ḣ

)

+ ∂rr fR +
(
A′

A
+ 2

C ′

C
− 2

H ′

H

)
∂r fR,

ψ01 = − A′

A
∂t fR + ∂t∂r fR − Ḣ

H
∂r fR,

ψ22 = −C2 ∂t t fR
A2 + C2

A2

(
Ȧ

A
− 3

Ċ

C
− Ḣ

H

)
∂t fR

+ C2

H2 ∂r fR

(
A′

A
+ C ′

C
− H ′

H

)
,

while the Gγ δ are mentioned in [47]. Here, the prime indi-
cates ∂

∂r . The relativistic fluid 4-velocity, U can be given by

U = DTC = Ċ

A
. (10)

The spherical mass function via the Misner–Sharp formula-
tions can be recast in the form [57]

m(t, r) = C

2

(
1 + Ċ2

A2 − C ′2

H2

)
. (11)

The temporal and radial derivatives of the above equation
after using Eqs. (6)–(8) and (10) are found as follows:

DTm = −1

2(1 + 2RλT 2)

[
U

{
(1 + 2TλR2)(P̄r − 4

3
ησ)

+2TλR2μ − λ

2
R2T 2 + ϕ11

H2

}

+E

{
(1 + 2TλR2)

1 + 2RλT 2 q̄ − ϕ01

AH

}]
, (12)

DCm = C2

2(1 + 2RλT 2)

[
μ̄ + 2TλR2 − λ

2
R2T 2 + ϕ00

A2

−U

E

{
ϕ01

AH
− (1 + 2TλR2)

1 + 2RλT 2 q̄

}]
, (13)

where the over-bar notation describes X̄ = ε + X, while
DT = 1

A
∂
∂t . The second equation from the above set of equa-

tions leads to

m =1

2

∫ C

0

C2

1 + 2RλT 2

[
μ̄ + 2TλR2 − λ

2
R2T 2

+ϕ00

A2 − U

E

{
ϕ01

AH
− (1 + 2TλR2)

1 + 2RλT 2 q̄

}]
dC, (14)
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where E ≡ C ′
H , whose value can be written through the mass

function as

E ≡ C ′

H
=

[
1 +U 2 − 2m(t, r)

C

]1/2

. (15)

Equations (12)–(15) yield

3m

C3 = 3κ

2C3

∫ r

0

[
μ̄ + 2TλR2 − λ

2
R2T 2 + ϕ00

A2

+U

E

{
(1 + 2TλR2)

1 + 2RλT 2 q̄ − ϕ01

AH

}
C2C ′

]
dr, (16)

which connects various structural variable elements, like the
energy density, the mass function etc., with f (R, T ) extra
curvature terms. It is well known that in the spherical case
the Weyl tensor can be decomposed into two different tensors,
i.e., the magnetic Hαβ part and the electric Eαβ part. These
two are defined, respectively, as

Hαβ = 1

2
εαγ ηδC

ηδ
βρV

γ V ρ = C̃αγβδV
γ V δ,

Eαβ = CαφβϕV
φV ϕ,

where ελμνω ≡ √−gηλμνω with ηλμνω as a Levi-Civita
symbol. The electric component of the Weyl tensor can be
expressed through the fluid’s four-vectors by

Eλν =
[
χλχν − gλν

3
− 1

3
VλVν

]
E,

in which E represents the scalar corresponding to the Weyl
tensor. The value of E through spherical geometric variables
is found by

E = − 1

2C2 +
[
− B̈

B
+

(
Ċ

C
+ Ȧ

A

) (
Ḃ

B
− Ċ

C

)
+ C̈

C

]
1

2A2

−
[
−

(
A′

A
− C ′

C

) (
C ′

C
+ B ′

B

)
+ C ′′

C
− A′′

A

]
1

2B2 .

(17)

Another way of writing E with the inclusion of f (R, T ) extra
curvature terms is

E = 1

2(1 + 2RλT 2)

[
μ̄ + 2R2λT − (1 + 2R2λT )(	̄ − 2ησ)

− λ

2
T 2R2 + ϕ00

A2 − ϕ11

B2 + ϕ22

C2

]

− 3

2C3

∫ r

0

C2

1 + 2RλT 2

[
μ̄ + 2R2λT − λ

2
T 2R2

+ϕ00

A2 + U

E

{
(1 + 2R2λT )

1 + 2RλT 2 q̄ − ϕ01

AH

}
C2C ′

]
dr,

(18)

where the bar over 	 indicates 	̄ = P̄r − P⊥.

3 Modified scalar variables and f (R, T ) gravity

Here, we shall compute structure scalars corresponding to
radiating spherical bodies in R+λR2T 2 gravity. In this back-
ground, we will use two well-known tensors, i.e., Xαβ and
Yαβ . These tensors were proposed by Bel [58] and Herrera
et al. [46,47] after the orthogonal splitting of the Riemann
curvature tensor. These are

Xαβ = ∗R∗
αγβδV

γ V δ = 1

2
ηερ

αγ R
∗
ερβδV

γ V δ, Yαβ

= RαγβδV
γ V δ, (19)

where stars on the right, left and both sides of the tensor
describe the operation related to the right, left and double
dual of that term, respectively. These tensors with the help
of the four-vector Vα and the projection tensor, hαβ , can be
written

Xαβ = 1

3
XT hαβ + XT F

(
χαχβ − 1

3
hαβ

)
, (20)

Yαβ = 1

3
YT hαβ + YT F

(
χαχβ − 1

3
hαβ

)
, (21)

here XT and YT indicate trace parts of the tensors Xαβ and
Yαβ , respectively, while XT F and YT F stand for the trace-
free components of the tensors Xαβ and Yαβ , respectively
(for details, see [59–67]). Using Eqs. (6)–(10), (20) and (21),
we obtain

XT = 1

1 + 2RλT 2

{
μ̄ + 2R2λT + ϕ00

A2 + λ

2
R2T 2

}
,

(22)

XT F = −E − 1

2(1 + 2RλT 2)

{
(2R2λT + 1)(−2ση + 	̄)

− ϕ22

C2 + ϕ11

H2

}
, (23)

YT = 1

2(1 + 2RλT 2)

{
6μR2λT + μ̄ + 2R2λT

+3(1 + 2R2λT )P̄r − 2	̄(2R2λT + 1)

+ϕ00

A2 + ϕ11

H2 + 2ϕ22

C2 + +2λT 2R2
}

, (24)

YT F = E − 1

2(1 + 2RλT 2)

{
(	̄ − 2ησ)(2R2λT + 1)

− ϕ22

C2 + ϕ11

H2

}
. (25)

The value of YT F follows from Eqs. (18) and (25) as

YT F = 1

2(1 + 2RλT 2)

(
μ̄ + 2R2λT

−2(1 + 2R2λT )(	̄ − 4ησ) + λ

2
T 2R2
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+ϕ00

A2 − 2ϕ11

H2 + 2ϕ22

C2

)
− 3

2C3

∫ r

0

C2

1 + 2RλT 2

[
μ̄ + 2R2λT

−λ

2
T 2R2 + ϕ00

A2 + U

E

{
(1 + 2R2λT )

1 + 2RλT 2 q̄ − ϕ01

AH

}
C2C ′

]
dr.

(26)

One can define a few particular fluid and dark source terms
with dagger variables as

μ† ≡ μ̄ + 2R2λT + ϕ00

A2 , P†
r ≡ P̄r + ϕ11

H2 − 4

3
ησ,

P†
⊥ ≡ P⊥ + ϕ22

C2 + 2

3
ησ,

	† ≡ P†
r − P†

⊥ = 	 − 2ησ − ϕ22

C2 + ϕ11

H2 .

In this context, it follows from Eqs. (22)–(25) that

XT F = 3κ

2C3

∫ r

0

[
1

{1 + 2RλT 2}
{
μ† − λ

2
T 2R2 +

(
q̂ − ϕq

AB

) U

E

}

×C2C ′] dr − 1

2{1 + 2RλT 2}
[
μ† − λ

2
T 2R2

]
, (27)

YT F = 1

2(1 + 2RλT 2)

[
μ† − λ

2
T 2R2 − 2(1 + 2R2λT )	†

+ 4R2λT ×
(ϕ11

H2 − ϕ22

C2

) ]
− 3

2C3

∫ r

0

[
1

{1 + 2RλT 2}
×

{
μ† − λ

2
T 2R2 +

(
q̂ − ϕq

AH

) U

E

}
C2C ′

]
dr, (28)

YT = 1

2(1 + 2RλT 2)

[
(1 + 6R2λT )μ† − 6εR2λT

+ 3(1 + 2R2λT )P†
r − 2(1 + 2R2λT )	† − 2R2λT

×
(ϕ11

H2 + 3
ϕ00

A2

)
+ 2(2 + 2R2λT )

ϕ22

C2 − 2λT 2R2
]
,

(29)

XT = 1

(1 + 2RλT 2)

[
μ† − λ

2
T 2R2

]
. (30)

The GR structure scalars [47] can be retrieved by taking
f (R, T ) = R in the above equations. These quantities have
utmost relevance in the study of some important dynamical
features of self-gravitating objects, for instance the IED and
the quantity of matter content. In order to understand the
role of f (R, T ) terms on the shear and expansion evolution
of radiating relativistic interiors we compute the Raychaud-
huri equations. These relations were also evaluated indepen-
dently by Landau [68]. With the help of the f (R, T ) structure
scalars the following can be written:

−(YT ) = �2

3
+ 2

3
σαβσαβ + V α�;α − aα

;α, (31)

describing the importance of one of the f (R, T ) scalar func-
tions in the modeling of the expansion scalar evolution equa-
tion. In a similar fashion we calculate the shear evolution
equation:

YT F = a2 + χαa;α − aC ′

BC
− 2

3
�σ − V ασ;α − 1

3
σ 2. (32)

It is pertinent to mention that this equation has been expressed
successfully via the f (R, T ) structure scalar, YT F . Using
field equations and Eq. (27), the differential equation can be
written
[
XT F + κμ†

2(1 + 2RλT 2)

]′
= −XT F

3C ′
C

+ κ(� − σ)

2(1 + 2RλT 2)

(
qB − ϕq

A

)
.

(33)

By solving the equation for XT F it is seen that it is XT F that
is controlling the IED of the spherical dissipative celestial
bodies.

4 Evolution equations with constant R and T

In this section we shall investigate the influences of the
R + λR2T 2 corrections on the formulations of the shear, the
expansion and the Weyl evolution equation for a relativis-
tic dust cloud with constant curvature quantities. In order
to represents constant values of R and T we shall use the
tilde over the corresponding mathematical quantities. In this
framework the spherical mass function in the presence of
R̄ + λR̃2T̃ 2 corrections is found to be

m = 1

2{1 + 2RλT 2}
∫ r

0
(μ + 2TλR2)C2C ′dr

− λR2T 2

2{1 + 2RλT 2}
∫ r

0
C2C ′dr, (34)

while the Weyl scalar turns out to be

E = 1

2C3{1 + 2RλT 2}
∫ r

0
μ′C3dr − λR2T 2

4{1 + 2RλT 2} .
(35)

The widely known equation relating the spherical mass with
the radiating structural parameters can be recast:

3m

C3 = 1

2{1 + 2RλT 2}
[
μ + 2TλR2 − 1

C3

∫ r

0
μ′C3dr

]

+ λR2T 2

2{1 + 2RλT 2} . (36)

The f (R, T ) structure scalars with R̄ + λR̃2T̃ 2 corrections
boil down to be

X̃T = 1

{1 + 2RλT 2}
[
μ + 2TλR2 − λ

2
R2T 2

]
, (37)

ỸT F = −X̃T F = E, (38)
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Fig. 1 Plot of the dynamical variable ỸT for the strange star candidate 4U 1820-30
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Fig. 2 Behavior of the dynamical variable X̃T for the strange star candidate 4U 1820-30

ỸT = 1

2{1 + 2RλT 2}
[
μ + 2TλR2 + 6μTλR2 − 2λR2T 2] .

(39)

These equations indicate that XT , YT and YT F , XT F are the
controlling effects induced by the fluid energy density and
the tidal forces caused by the the Weyl scalar, respectively
in an environment of f (R, T ) extra degrees of freedom. An
equation describing the evolution of inhomogeneity factors
in the emergence of the IED for dust fluid is

[
μ

2{1 + 2RλT 2} − λT 2R2

4{1 + 2RλT 2} + X̃T F

]′
= − 3

C
X̃T FC

′.

(40)

This equation involves the X̃T F , which was pointed out to
be the inhomogeneity factor in the context of GR. It is seen
from the above equation that μ = μ(t) if and only if X̃T F =
0 = λ. This shows that, even in R̃ + λR̃2T̃ 2 gravity, X̃T F is
an IED factor. In the famework of non-interacting particles
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Fig. 3 Role of the dark
dynamical variable X̃T F on the
evolution of the strange star
candidate 4U 1820-30

2 4 6 8 10
r

2

4

6

8

10
XTF

Fig. 4 Plot for the dark
dynamical variable ỸT F on the
evolution of the strange star
candidate 4U 1820-30
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evolving with a constant R and T the shear and the expansion
evolution equations turn out to be

V α�;α + 2

3
σ 2 + �2

3
− aα

;α

= 1

{1 + 2RλT 2}
[
μ + 2TλR2 − λ

2
T 2R2

]
= −ỸT ,

(41)

V ασ;α + σ 2

3
+ 2

3
σ� = −E = −ỸT F . (42)

These equations have been expressed with the help of ỸT F

and ỸT . It is worthy to notice that one can use these set of
equations to check the structure formation of compact objects
under expansion-free scenario [69–72].

The study of compact objects is among the most burning
issues of our mysterious dark universe in which stars came
into being during the dying phenomenon of relativistic mas-
sive stars. Such celestial bodies have the size of a big city
and in general contain at least 40% more mass than the solar
mass. Due to this fact their core density exceeds the density
of an atomic nucleus. This shows in particular that compact
stars could be treated as test particles in the study of some
physical features beyond the nuclear density.

Rossi X-ray timing explorer gathered information based
on satellite observations about the structure of a neutron
star, named 4U1820-30. They found the mass of this star
to be 2.25M	 containing a high amount of exotic mat-
ter. We now apply our results of dynamical dark variables
to the observational values of this compact star. As our
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f (R, T ) field equations are non-linear in nature we sup-
pose that our star consists of non-interacting particles. We
suppose also that our geometry is demarcated with the
three-dimensional boundary surface. The interior is given
by (3), while the exterior vacuum geometry is given by

ds2+ = −Z2dν2 + Z−1dρ2 + ρ2(dθ2 + sin2 θdφ2), (43)

where Z =
(

1 − 2M
ρ

)
with M and ν are the total mat-

ter content and the retarded time, respectively. We use
the Darmois junction conditions [73] to make continuous
connections between Eqs. (3) and (43) over the hyper-
surface. These conditions, after some manipulations, lead
to

Adt
�= dν

(
1 − 2

M

ρ

)
, C

�= ρ(ν), (44)

M
�= m(t, r). (45)

These constraints should be fulfilled by both manifolds in
order to remove jumps over the boundary.

It is well known from the literature that the dynamical vari-
able, YT , plays the same role as that of the Tolman mass den-
sity in the evolutionary phases of those relativistic systems
which are in the state of equilibrium or quasi-equilibrium.
Figures 1 and 2 state the evolution of the ỸT and X̃T vari-
ables with the increase of r and T , respectively. Other very
important dark scalar functions are the ˜XT F and the ˜YT F .
These two variables have opposite behavior on the dynami-
cal phases of our relativistic 4U 1820-30 star candidate. The
modified structure scalar ˜XT F controls the appearance of
inhomogeneities on the initially regular compact object. It
can be observed from Fig. 3 that the inhomogeneity of the
compact star keeps on decreasing by increasing the radial
coordinate of the spherical self-gravitating object. The totally
reverse behavior of YT F can be observed from Fig. 4.

5 Conclusions

This paper is dedicated to exploring the effects of the extra
curvature ingredients of the f (R, T ) gravity theory on the
dynamical variables of a compact spherical star. The mat-
ter contents in the stellar interior is considered to be imper-
fect due to anisotropic stresses, shear viscosity and dissipa-
tive terms. A particular form of the f (R, T ) function, i.e.
f (R, T ) = f1(R) + f2(R) f3(T ), is utilized to explore the
modified field equations. The Misner–Sharp mass function
is generalized by including the higher curvature ingredients
of the f (R, T ) theory. We have split the Weyl tensor, which
describes the distortion in the shapes of celestial objects due
to tidal forces, in an electric part and in a magnetic part. The

magnetic part vanishes due to the symmetry of the spherical
star and all the tidal effects are due to its electric component.

A correspondence between the scalar component associ-
ated with the Weyl tensor with matter variables has been
established under the influence of the extra curvature ingre-
dients of f (R, T ) theory. In a similar way the electric part
of Riemann tensor is extracted and its second dual tensor
formulated. These two tensors are furthers divided into their
constituent scalar parts, named structure scalars. These scalar
parts are written in terms of matter variables with the help
of modified field equations and the Weyl scalar. The effects
of higher-order terms are also found in the formation of the
dynamical equations obtained in Eqs. (27)–(30). These struc-
tural dynamical equations have enough significance to dis-
cuss the evolution of self-gravitating compact objects. We
have also explored the Raychaudhuri equations for the shear
and expansion scalar which are related with some of the struc-
ture scalars. Further, a differential equation is formulated by
adopting the procedure developed by Ellis which is of signif-
icance in the discussion of the inhomogeneous density dis-
tribution in the universe. One can find that the irregularities
in the matter density can be controlled via one of the scalar
variable. We also have explored the dark dynamical variables
under the condition of the constant Ricci invariant and the
trace of the stress energy tensor. These dark dynamical vari-
ables are effected by the tidal effects due to the electric part
of the Weyl tensor. Further, the evolution equations for the
shear and the expansion are formulated in this background
and linked with the structure scalars. All our results are con-
sistent with those already obtained in the literature.
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