218 research outputs found

    Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers

    Get PDF
    We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intra-cavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for frep and fceo, producing a robust and low phase noise fiber frequency comb. The comb was self-referenced with an f - 2f interferometer and phase locked to an ultra-stable optical reference used for the JILA Sr optical clock at 698 nm, exhibiting 0.21 rad and 0.47 rad of integrated phase errors (over 1 mHz - 1 MHz) respectively. Alternatively, the comb was locked to two optical references at 698 nm and 1064 nm, obtaining 0.43 rad and 0.14 rad of integrated phase errors respectively

    The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages

    Get PDF
    The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli

    Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast

    Get PDF
    Isabel A. Calvo et al...Background An excess of caffeine is cytotoxic to all eukaryotic cell types. We aim to study how cells become tolerant to a toxic dose of this drug, and the relationship between caffeine and oxidative stress pathways. Methodology/Principal Findings We searched for Schizosaccharomyces pombe mutants with inhibited growth on caffeine-containing plates. We screened a collection of 2,700 haploid mutant cells, of which 98 were sensitive to caffeine. The genes mutated in these sensitive clones were involved in a number of cellular roles including the H2O2-induced Pap1 and Sty1 stress pathways, the integrity and calcineurin pathways, cell morphology and chromatin remodeling. We have investigated the role of the oxidative stress pathways in sensing and promoting survival to caffeine. The Pap1 and the Sty1 pathways are both required for normal tolerance to caffeine, but only the Sty1 pathway is activated by the drug. Cells lacking Pap1 are sensitive to caffeine due to the decreased expression of the efflux pump Hba2. Indeed, ?hba2 cells are sensitive to caffeine, and constitutive activation of the Pap1 pathway enhances resistance to caffeine in an Hba2-dependent manner. Conclusions/Significance With our caffeine-sensitive, genome-wide screen of an S. pombe deletion collection, we have demonstrated the importance of some oxidative stress pathway components on wild-type tolerance to the drug.This work was supported by Direccion General de Investigacion of Spain Grant BFU2006-02610, and by the Spanish program Consolider-Ingenio 2010 Grant CSD 2007-0020, to E.H.Peer reviewe

    Structure and N-acetylglucosamine binding of the distal domain of mouse adenovirus 2 fibre

    Get PDF
    15 pags, 8 figsMurine adenovirus 2 (MAdV-2) infects cells of the mouse gastrointestinal tract. Like human adenoviruses, it is a member of the genus Mastadenovirus, family Adenoviridae. The MAdV-2 genome has a single fibre gene that expresses a 787 residue-long protein. Through analogy to other adenovirus fibre proteins, it is expected that the carboxy-terminal virus-distal head domain of the fibre is responsible for binding to the host cell, although the natural receptor is unknown. The putative head domain has little sequence identity to adenovirus fibres of known structure. In this report, we present high-resolution crystal structures of the carboxy-terminal part of the MAdV-2 fibre. The structures reveal a domain with the typical adenovirus fibre head topology and a domain containing two triple ß-spiral repeats of the shaft domain. Through glycan microarray profiling, saturation transfer difference nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and site-directed mutagenesis, we show that the fibre specifically binds to the monosaccharide N-acetylglucosamine (GlcNAc). The crystal structure of the complex reveals that GlcNAc binds between the AB and CD loops at the top of each of the three monomers of the MAdV-2 fibre head. However, infection competition assays show that soluble GlcNAc monosaccharide and natural GlcNAc-containing polymers do not inhibit infection by MAdV-2. Furthermore, site-directed mutation of the GlcNAc-binding residues does not prevent the inhibition of infection by soluble fibre protein. On the other hand, we show that the MAdV-2 fibre protein binds GlcNAc-containing mucin glycans, which suggests that the MAdV-2 fibre protein may play a role in viral mucin penetration in the mouse gut.This research was sponsored by grant BFU2014-53425-P (to M. J. v. R.), coordinated grants CTQ2015-64597-P-C02-01 and CTQ2015-64597-P-C02-02 (to J. J. B. and F. J. C., respectively), grant BFU2015-70052-R (to M. M.) and the Spanish Adenovirus Network (AdenoNet, BIO2015-68990-REDT), all from the Spanish Agencia Estatal de Investigación. Financial support to M. M. from the CIBER of Respiratory Diseases (CIBERES) from the Spanish Institute of Health Carlos III is also acknowledged. These grants are co-financed by the European Regional Development Fund of the European Union. A. K. S. and T. H. N. were recipients of pre-doctoral fellowships from La Caixa and CSIC-VAST, respectively. The expression vectors were designed and created in Hungary, and this was financed by the Hungarian Scientific Research Fund (OTKA K100163). M. K. thanks Enterprise Ireland for a Commercialisation Fund grant (CF/2015/0089), A. K. acknowledges the National University of Ireland for a Cancer Care West Hardiman PhD scholarship and L. J. acknowledges the EU FP7 programme in support of the GlycoHIT consortium (grant no. 260600). This work was supported by R01 AI104920 (to J. G. S.) from the National Institute for Allergy and Infectious Diseases (www.niaid.nih.gov). S. S. W. was also supported by the Helen Riaboff Whiteley Endowment to the University of Washington and by Public Health Service, National Research Service Awards T32 AI083203 from the National Institute for Allergy and Infectious Diseases and T32 GM007270 from the National Institute of General Medical Sciences

    Variable stars in the globular cluster M13

    Get PDF
    Results of a search for variable stars in the central region of the globular cluster M13 are presented. Prior to this study, 36 variable and suspected variable stars were known in this cluster (Osborn 2000; Clement et al. 2001). Of these stars, five were not observed by us. We find v3, v4, v10, v12, and v13 to be constant in light. Surprisingly, only two out of the ten variable star candidates of Kadla et al. (1980) appear to be variable. Both are RRc variables. Additionally, three RR Lyrae stars and one SX Phoenicis variable are discovered. Three close frequencies are detected for an RRc star v36. It appears that this variable is another multi-periodic RR Lyrae star pulsating in non-radial modes. Light curves of the three known BL Herculis stars and all known RR Lyrae stars are presented. The total number of known RR Lyrae stars in M13 is now nine. Only one is an RRab star. The mean period of RRc variables amounts to 0.36 +/- 0.05 d, suggesting that M13 should be included in the group of Oosterhoff type II globular clusters. Mean V magnitudes and ranges of variation are derived for seven RR Lyrae and three BL Herculis variables. Almost all observed bright giants show some degree of variability. In particular, we confirm the variability of two red giants announced to be variable by Osborn (2000) and in addition find five new cases.Comment: 10 pages, 9 figures, 5 tables, accepted for publication in AA

    Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation

    Get PDF
    Adenovirus early region 1A (E1A) possesses potent transforming activity when expressed in concert with activated ras or E1B genes in in vitro tissue culture systems such as embryonic human retinal neuroepithelial cells or embryonic rodent epithelial and fibroblast cells. Early region 1A has thus been used extensively and very effectively as a tool to determine the molecular mechanisms that underlie the basis of cellular transformation. In this regard, roles for the E1A-binding proteins pRb, p107, p130, cyclic AMP response element-binding protein (CBP)/p300, p400, TRRAP and CtBP in cellular transformation have been established. However, the mechanisms by which E1A promotes transformation through interaction with these partner proteins are not fully delineated. In this review, we focus on recent advances in our understanding of CBP/p300 function, particularly with regard to its relationship to the anaphase-promoting complex/cyclosome E3 ubiquitin ligase, which has recently been shown to interact and affect the activity of CBP/p300 through interaction domains that are evolutionarily conserved in E1A

    Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages play essential roles in both innate and adaptive immune responses. Bacteria require endotoxin, a complex lipopolysaccharide, for outer membrane permeability and the host interprets endotoxin as a signal to initiate an innate immune response. The focus of this study is kinetic and global transcriptional analysis of the chicken macrophage response to <it>in vitro </it>stimulation with endotoxin from <it>Salmonella </it><it>typhimurium</it>-798.</p> <p>Results</p> <p>The 38535-probeset Affymetrix GeneChip Chicken Genome array was used to profile transcriptional response to endotoxin 1, 2, 4, and 8 hours post stimulation (hps). Using a maximum FDR (False Discovery Rate) of 0.05 to declare genes as differentially expressed (DE), we found 13, 33, 1761 and 61 DE genes between endotoxin-stimulated versus non-stimulated cells at 1, 2, 4 and 8 hps, respectively. QPCR demonstrated that endotoxin exposure significantly affected the mRNA expression of <it>IL1B</it>, <it>IL6</it>, <it>IL8</it>, and <it>TLR15</it>, but not <it>IL10 </it>and <it>IFNG </it>in HD 11 cells. Ingenuity Pathway Analysis showed that 10% of the total DE genes were involved in inflammatory response. Three, 9.7, 96.8, and 11.8% of the total DE inflammatory response genes were significantly differentially expressed with endotoxin stimulation at 1, 2, 4 and 8 hps, respectively. The <it>NFKBIA, IL1B, IL8 and CCL4 </it>genes were consistently induced at all times after endotoxin treatment. <it>NLRC5 </it>(CARD domain containing, NOD-like receptor family, RCJMB04_18i2), an intracellular receptor, was induced in HD11 cells treated with endotoxin.</p> <p>Conclusions</p> <p>As above using an <it>in vitro </it>model of chicken response to endotoxin, our data revealed the kinetics of gene networks involved in host response to endotoxin and extend the known complexity of networks in chicken immune response to Gram-negative bacteria such as <it>Salmonella</it>. The induction of <it>NFKBIA, IL1B, IL8, CCL4 </it>genes is a consistent signature of host response to endotoxin over time. We make the first report of induction of a NOD-like receptor family member in response to <it>Salmonella </it>endotoxin in chicken macrophages.</p
    corecore