529 research outputs found

    Properties of Foreshocks and Aftershocks of the Non-Conservative SOC Olami-Feder-Christensen Model: Triggered or Critical Earthquakes?

    Get PDF
    Following Hergarten and Neugebauer [2002] who discovered aftershock and foreshock sequences in the Olami-Feder-Christensen (OFC) discrete block-spring earthquake model, we investigate to what degree the simple toppling mechanism of this model is sufficient to account for the properties of earthquake clustering in time and space. Our main finding is that synthetic catalogs generated by the OFC model share practically all properties of real seismicity at a qualitative level, with however significant quantitative differences. We find that OFC catalogs can be in large part described by the concept of triggered seismicity but the properties of foreshocks depend on the mainshock magnitude, in qualitative agreement with the critical earthquake model and in disagreement with simple models of triggered seismicity such as the Epidemic Type Aftershock Sequence (ETAS) model [Ogata, 1988]. Many other features of OFC catalogs can be reproduced with the ETAS model with a weaker clustering than real seismicity, i.e. for a very small average number of triggered earthquakes of first generation per mother-earthquake.Comment: revtex, 19 pages, 8 eps figure

    Solar and Atmospheric Neutrinos: Background Sources for the Direct Dark Matter Searches

    Full text link
    In experiments for direct dark matter searches, neutrinos coherently scattering off nuclei can produce similar events as Weakly Interacting Massive Particles (WIMPs). The calculated count rate for solar neutrinos in such experiments is a few events per ton-year. This count rate strongly depends on the nuclear recoil energy threshold achieved in the experiments for the WIMP search. We show that solar neutrinos can be a serious background source for direct dark matter search experiments using Ge, Ar, Xe and CaWO_4 as target materials. To reach sensitivities better than approximatly 10^-10 pb for the elastic WIMP nucleon spin-independent cross section in the zero-background limit, energy thresholds for nuclear recoils should be approximatly >2.05 keV for CaWO_4, >4.91 keV for Ge, >2.89 keV for Xe, and >8.62 keV for Ar as target material. Next-generation experiments should not only strive for a reduction of the present energy thresholds but mainly focus on an increase of the target mass. Atmospheric neutrinos limit the achievable sensitivity for the background-free direct dark matter search to approximatly >10^-12 pb.Comment: accepted by Astroparticle Physic

    Yersinia pestis DNA from Skeletal Remains from the 6(th) Century AD Reveals Insights into Justinianic Plague.

    Get PDF
    Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19(th) and 20(th) centuries, during which plague was spread around the world, and the second pandemic of the 14(th)-17(th) centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6(th)-8(th) centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics

    Evidence for strong relations between the upper Tagus loess formation (central Iberia) and the marine atmosphere off the Iberian margin during the last glacial period

    Get PDF
    During glacial times, the North Atlantic region was affected by serious climate changes corresponding to Dansgaard-Oeschger cycles that were linked to dramatic shifts in sea temperature and moisture transfer to the continents. However, considerable efforts are still needed to understand the effects of these shifts on terrestrial environments. In this context, the Iberian Peninsula is particularly interesting because of its close proximity to the North Atlantic, although the Iberian interior lacks paleoenvironmental information so far because suitable archives are rare. Here we provide an accurate impression of the last glacial environmental developments in central Iberia based on comprehensive investigations using the upper Tagus loess record. A multi-proxy approach revealed that phases of loess formation during Marine Isotope Stage (MIS) 2 (and upper MIS 3) were linked to utmost aridity, coldness, and highest wind strengths in line with the most intense Greenland stadials also including Heinrich Events 3–1. Lack of loess deposition during the global last glacial maximum (LGM) suggests milder conditions, which agrees with less-cold sea surface temperatures (SST) off the Iberian margin. Our results demonstrate that geomorphological system behavior in central Iberia is highly sensitive to North Atlantic SST fluctuations, thus enabling us to reconstruct a detailed hydrological model in relation to marine–atmospheric circulation patterns
    • …
    corecore