20 research outputs found

    Malignant astrocyte swelling and impaired glutamate clearance drive the expansion of injurious spreading depolarization foci

    Get PDF
    Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 mu M) predisposes an extensive bulk of tissue (4-5 mm(2)) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm(2)), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 mu M) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury

    Malignant astrocyte swelling and impaired glutamate clearance drive the expansion of injurious spreading depolarization foci

    Get PDF
    Spreading depolarizations (SDs) indicate injury progression and predict worse clinical outcome in acute brain injury. We demonstrate in rodents that acute brain swelling upon cerebral ischemia impairs astroglial glutamate clearance and increases the tissue area invaded by SD. The cytotoxic extracellular glutamate accumulation (>15 mu M) predisposes an extensive bulk of tissue (4-5 mm(2)) for a yet undescribed simultaneous depolarization (SiD). We confirm in rat brain slices exposed to osmotic stress that SiD is the pathological expansion of prior punctual SD foci (0.5-1 mm(2)), is associated with astrocyte swelling, and triggers oncotic neuron death. The blockade of astrocytic aquaporin-4 channels and Na+/K+/Cl- co-transporters, or volume-regulated anion channels mitigated slice edema, extracellular glutamate accumulation (<10 mu M) and SiD occurrence. Reversal of slice swelling by hyperosmotic mannitol counteracted glutamate accumulation and prevented SiD. In contrast, inhibition of glial metabolism or inhibition of astrocyte glutamate transporters reproduced the SiD phenotype. Finally, we show in the rodent water intoxication model of cytotoxic edema that astrocyte swelling and altered astrocyte calcium waves are central in the evolution of SiD. We discuss our results in the light of evidence for SiD in the human cortex. Our results emphasize the need of preventive osmotherapy in acute brain injury

    LĂ©zeres szĂłrĂĄsi interferencia kontrasztelemzĂ©sen alapulĂł vĂ©rĂĄramlĂĄsmĂ©rƑ rendszer Ă©pĂ­tĂ©se

    Get PDF
    Ha egy koherens fĂ©nnyel megvilĂĄgĂ­tott optikailag egyenetlen felĂŒletre tekintĂŒnk, akkor egy szemcsĂ©s szerkezetƱ interferenciakĂ©pet lĂĄtunk. Ez a jelensĂ©g a szĂłrĂĄsi interferencia, melyet napjainkban szĂĄmos terĂŒleten alkalmaznak: talĂĄlkozhatunk vele ipari Ă©s orvosi berendezĂ©sekben, mĂ©rƑmƱszerekben, de olyan hĂ©tköznapi eszközökben is felhasznĂĄljĂĄk, mint amilyen a lĂ©zeres optikai egĂ©r. Az orvostudomĂĄnyban a jelensĂ©g egyik alkalmazĂĄsi terĂŒlete a szĂłrĂĄsi interferencia kontrasztelemzĂ©sen alapulĂł vĂ©rĂĄramlĂĄsmĂ©rĂ©s, melynek sorĂĄn a vizsgĂĄlt agyfelszĂ­ni vagy szemfenĂ©ki szövetet lĂ©zerfĂ©nnyel vilĂĄgĂ­tjĂĄk meg. Mivel ekkor a fĂ©ny fƑkĂ©nt a vörösvĂ©rtestekrƑl szĂłrĂłdik, a terĂŒletet figyelƑ kamera fĂ©nyĂ©rzĂ©keny chipjĂ©n keletkezƑ interferenciakĂ©p azok mozgĂĄsa miatt idƑben vĂĄltozik. Ez a fluktuĂĄciĂł az adott expozĂ­ciĂłs idƑvel kĂ©szĂŒlt felvĂ©teleken az interferenciakĂ©p elmosĂłdĂĄsĂĄt (a kontraszt csökkenĂ©sĂ©t) okozza, melybƑl következtetni lehet a vĂ©rĂĄramlĂĄs intenzitĂĄsĂĄra. A kĂ©pkiĂ©rtĂ©kelĂ©si eljĂĄrĂĄsok eleinte inkĂĄbb csak kvalitatĂ­van jellemeztĂ©k a vĂ©rĂĄramlĂĄsban, perfĂșziĂłban bekövetkezƑ esetleges vĂĄltozĂĄsokat. BƑrszövet esetĂ©n ez kĂŒlönösen igaz volt, mivel a mozdulatlan szövetrĂ©szek okozta statikus szĂłrĂłdĂĄs jelentƑsen torzĂ­totta a mĂ©rĂ©si eredmĂ©nyeket. MĂĄra a mĂ©rĂ©si eredmĂ©nyek reprodukĂĄlhatĂłsĂĄga jelentƑsen javult, mĂ©gsem sikerĂŒlt teljes mĂ©rtĂ©kben kikĂŒszöbölni a statikus szĂłrĂłdĂĄs torzĂ­tĂł hatĂĄsĂĄt. Emiatt a jelenleg alkalmazott, egyetlen expozĂ­ciĂłs idƑt felhasznĂĄlĂł mĂłdszerek nem teszik lehetƑvĂ© a kĂŒlönbözƑ szemĂ©lyeken, vagy egy szemĂ©lyen, de kĂŒlönbözƑ körĂŒlmĂ©nyek között elvĂ©gzett mĂ©rĂ©sek eredmĂ©nyeinek összehasonlĂ­tĂĄsĂĄt. Dolgozatom tĂ©mĂĄja egy olyan szĂłrĂĄsi interferencia kontrasztelemzĂ©sen alapulĂł mĂ©rƑrendszer fejlesztĂ©se, mely több nagysĂĄgrendet ĂĄtfogĂł expozĂ­ciĂłs idƑ tartomĂĄnyon kĂ©szĂŒlt felvĂ©telek kiĂ©rtĂ©kelĂ©sĂ©vel lehetƑvĂ© teszi a mĂ©rĂ©si pontossĂĄg jelentƑs növelĂ©sĂ©t. Mivel az ĂĄltalam Ă©pĂ­tett eszköz közel valĂłs idejƱ mĂ©rĂ©sekre is kĂ©pes, Ă­gĂ©retes alternatĂ­vĂĄja lehet a meglehetƑsen költsĂ©ges Ă©s lassĂș pĂĄsztĂĄzĂł Doppleres vĂ©rĂĄramlĂĄsmĂ©rƑ eszközöknek. Dolgozatomban bemutatom a kutatĂĄs sorĂĄn elĂ©rt eredmĂ©nyeket, az ĂĄltalam kidolgozott Ă©s alkalmazott mĂ©rĂ©si mĂłdszerek fejlƑdĂ©sĂ©t. Megmutatom, miĂ©rt elƑnyös több expozĂ­ciĂłs idƑ alkalmazĂĄsa szintetikus minta esetĂ©n, illetve agyfelszĂ­n Ă©s bƑrszövet vĂ©rellĂĄtĂĄsĂĄnak vizsgĂĄlata sorĂĄn. VĂ©gĂŒl bevezetek egy olyan mĂ©rĂ©si protokollt, melynek segĂ­tsĂ©gĂ©vel jelentƑs mĂ©rtĂ©kben javĂ­thatĂł az ĂĄltalam alkalmazott mĂłdszer idƑbeli felbontĂĄsa, elĂ©rhetƑvĂ© tĂ©ve a közel valĂłs idejƱ mĂ©rĂ©seket

    Enhancements on multi-exposure LASCA to reveal information of speed distribution

    Get PDF
    Laser Speckle Contrast Analysis (LASCA) has been proven to be a highly useful tool for the full-field determination of the blood perfusion of a variety of tissues. Some of the major advantages of this technique are its relatively high spatial and temporal resolution as well as its good or excellent accordance to Doppler systems. However, traditionally it is only able to report a single characteristic speed regarding to the actual range of interest. This might be misleading if multiple characteristic speeds are present (e. g. tremor and perfusion in skin) or if several kinds of tissues are mixed (e. g. parenchyma and vessels in brain). Here we present two relatively simple extensions of LASCA for these problems. The application of multiple autocorrelation functions (combined with the usage of multiple exposure times) can help in the separation of multiple characteristic speeds. We also present a useful method for the separation of information those originate from a mixture of different tissues. The latter method can be also implemented to single-exposure systems. © 2015, European Optical Society (EOS). All rights reserved
    corecore