10 research outputs found

    Spatial storage of discrete dark solitons

    Full text link
    The interaction between a mobile discrete dark soliton (DDS) and impurities in one-dimensional nonlinear (Kerr) photonic lattices is studied. We found that the scattering is an inelastic process where the DDS can be reflected or transmitted depending on its transversal speed and the strength of the impurities. In particular, in the reflection regime, the DDS increases its transversal speed after each scattering. A method for spatial storage of DDS solutions using two impurities is discussed, where the soliton can be trapped within a storage region until it reaches the critical speed needed to be transmitted. We show, numerically, that this method allows the storage of multiple DDS simultaneously.Comment: 6 pages and 6 figure

    3D-printed low-cost choke corrugated Gaussian profile horn antenna for Ka-band

    No full text
    Abstract In this work, a fully 3D-printed choke corrugated Gaussian profile horn antenna (GPHA) using high-conductive filaments and a low-cost modular 3D-printing technique is implemented. The choke corrugated GPHA operates in the Ka-band, with a central frequency of 28 GHz. Although the antenna can be printed in one piece as its dimensions are within the printing limits, four pieces compose the three sections of the final 3D-printed antenna. The numerical simulations and measurements of the antenna show a good agreement, validating the possibility of cost-effective modular fabrication of this complex type of antennas

    The Entero-Mammary Pathway and Perinatal Transmission of Gut Microbiota and SARS-CoV-2

    No full text
    COVID-19 is a severe respiratory disease threatening pregnant women, which increases the possibility of adverse pregnancy outcomes. Several recent studies have demonstrated the ability of SARS-CoV-2 to infect the mother enterocytes, disturbing the gut microbiota diversity. The aim of this study was to characterize the entero-mammary microbiota of women in the presence of the virus during delivery. Fifty mother–neonate pairs were included in a transversal descriptive work. The presence of SARS-CoV-2 RNA was detected in nasopharyngeal, mother rectal swabs (MRS) and neonate rectal swabs (NRS) collected from the pairs, and human colostrum (HC) samples collected from mothers. The microbiota diversity was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries prepared from HC, MRS, and NRS. Data were analyzed with QIIME2 and R. Our results indicate that several bacterial taxa are highly abundant in MRS positive for SARS-CoV-2 RNA. These bacteria mostly belong to the Firmicutes phylum; for instance, the families Bifidobacteriaceae, Oscillospiraceae, and Microbacteriaceae have been previously associated with anti-inflammatory effects, which could explain the capability of women to overcome the infection. All samples, both positive and negative for SARS-CoV-2, featured a high abundance of the Firmicutes phylum. Further data analysis showed that nearly 20% of the bacterial diversity found in HC was also identified in MRS. Spearman correlation analysis highlighted that some genera of the Proteobacteria and Actinobacteria phyla were negatively correlated with MRS and NRS (p < 0.005). This study provides new insights into the gut microbiota of pregnant women and their potential association with a better outcome during SARS-CoV-2 infection

    Gut Microbiota Associated with Gestational Health Conditions in a Sample of Mexican Women

    No full text
    Gestational diabetes (GD), pre-gestational diabetes (PD), and pre-eclampsia (PE) are morbidities affecting gestational health which have been associated with dysbiosis of the mother’s gut microbiota. This study aimed to assess the extent of change in the gut microbiota diversity, short-chain fatty acids (SCFA) production, and fecal metabolites profile in a sample of Mexican women affected by these disorders. Fecal samples were collected from women with GD, PD, or PE in the third trimester of pregnancy, along with clinical and biochemical data. Gut microbiota was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries; SCFA and metabolites were measured by High-Pressure Liquid Chromatography (HPLC) and (Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR MS), respectively, in extracts prepared from feces. Although the results for fecal microbiota did not show statistically significant differences in alfa diversity for GD, PD, and PE concerning controls, there was a difference in beta diversity for GD versus CO, and a high abundance of Proteobacteria, followed by Firmicutes and Bacteroidota among gestational health conditions. DESeq2 analysis revealed bacterial genera associated with each health condition; the Spearman’s correlation analyses showed selected anthropometric, biochemical, dietary, and SCFA metadata associated with specific bacterial abundances, and although the HPLC did not show relevant differences in SCFA content among the studied groups, FT-ICR MS disclosed the presence of interesting metabolites of complex phenolic, valeric, arachidic, and caprylic acid nature. The major conclusion of our work is that GD, PD, and PE are associated with fecal bacterial microbiota profiles, with distinct predictive metagenomes
    corecore