44 research outputs found

    What neonatal complications should the pediatrician be aware of in case of maternal gestational diabetes?

    Get PDF
    In the epidemiologic context of maternal obesity and type 2 diabetes (T2D), the incidence of gestational diabetes has significantly increased in the last decades. Infants of diabetic mothers are prone to various neonatal adverse outcomes, including metabolic and hematologic disorders, respiratory distress, cardiac disorders and neurologic impairment due to perinatal asphyxia and birth traumas, among others. Macrosomia is the most constant consequence of diabetes and its severity is mainly influenced by maternal blood glucose level. Neonatal hypoglycemia is the main metabolic disorder that should be prevented as soon as possible after birth. The severity of macrosomia and the maternal health condition have a strong impact on the frequency and the severity of adverse neonatal outcomes. Pregestational T2D and maternal obesity significantly increase the risk of perinatal death and birth defects. The high incidence of maternal hyperglycemia in developing countries, associated with the scarcity of maternal and neonatal care, seriously increase the burden of neonatal complications in these countries

    Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches.

    Get PDF
    Metabolic syndrome (MetS) is a cluster of several disorders, such as hypertension, central obesity, dyslipidemia, hyperglycemia, insulin resistance and non-alcoholic fatty liver disease. Despite health policies based on the promotion of physical exercise, the reduction of calorie intake and the consumption of healthy food, there is still a global rise in the incidence and prevalence of MetS in the world. This phenomenon can partly be explained by the fact that adverse events in the perinatal period can increase the susceptibility to develop cardiometabolic diseases in adulthood. Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing cardiovascular diseases (CVD) and metabolic disorders later in life. It has been shown that alterations in the structural and functional integrity of the endothelium can lead to the development of cardiometabolic diseases. The endothelial progenitor cells (EPCs) are circulating components of the endothelium playing a major role in vascular homeostasis. An association has been found between the maintenance of endothelial structure and function by EPCs and their ability to differentiate and repair damaged endothelial tissue. In this narrative review, we explore the alterations of EPCs observed in individuals with cardiometabolic disorders, describe some mechanisms related to such dysfunction and propose some therapeutical approaches to reverse the EPCs dysfunction

    Calorie Restriction in Adulthood Reduces Hepatic Disorders Induced by Transient Postnatal Overfeeding in Mice.

    Get PDF
    Impaired early nutrition influences the risk of developing metabolic disorders in later life. We observed that transient postnatal overfeeding (OF) in mice induces long-term hepatic alterations, characterized by microsteatosis, fibrosis associated with oxidative stress (OS), and stress-induced premature senescence (SIPS). In this study, we investigated whether such changes can be reversed by moderate calorie restriction (CR). C57BL/6 male mice pups were maintained during lactation in litters adjusted to nine pups in the normal feeding (NF) group and three pups in the transient postnatal OF group. At six months of age, adult mice from the NF and OF groups were randomly assigned to an ad libitum diet or CR (daily energy supply reduced by 20%) for one month. In each group, at the age of seven months, analysis of liver structure, liver markers of OS (superoxide anion, antioxidant defenses), and SIPS (lipofuscin, p53, p21, p16, pRb/Rb, Acp53, sirtuin-1) were performed. CR in the OF group reduced microsteatosis, decreased levels of superoxide anion, and increased protein expression of catalase and superoxide dismutase. Moreover, CR decreased lipofuscin staining, p21, p53, Acp53, and p16 but increased pRb/Rb and sirtuin-1 protein expression. CR did not affect the NF group. These results suggest that CR reduces hepatic disorders induced by OF

    Resveratrol Reverses Endothelial Colony-Forming Cell Dysfunction in Adulthood in a Rat Model of Intrauterine Growth Restriction.

    Get PDF
    Individuals born after intrauterine growth restriction (IUGR) are at risk of developing cardiovascular diseases (CVDs). Endothelial dysfunction plays a role in the pathogenesis of CVDs; and endothelial colony-forming cells (ECFCs) have been identified as key factors in endothelial repair. In a rat model of IUGR induced by a maternal low-protein diet, we observed an altered functionality of ECFCs in 6-month-old males, which was associated with arterial hypertension related to oxidative stress and stress-induced premature senescence (SIPS). Resveratrol (R), a polyphenol compound, was found to improve cardiovascular function. In this study, we investigated whether resveratrol could reverse ECFC dysfunctions in the IUGR group. ECFCs were isolated from IUGR and control (CTRL) males and were treated with R (1 μM) or dimethylsulfoxide (DMSO) for 48 h. In the IUGR-ECFCs, R increased proliferation (5'-bromo-2'-deoxyuridine (BrdU) incorporation, p < 0.001) and improved capillary-like outgrowth sprout formation (in Matrigel), nitric oxide (NO) production (fluorescent dye, p < 0.01), and endothelial nitric oxide synthase (eNOS) expression (immunofluorescence, p < 0.001). In addition, R decreased oxidative stress with reduced superoxide anion production (fluorescent dye, p < 0.001); increased Cu/Zn superoxide dismutase expression (Western blot, p < 0.05); and reversed SIPS with decreased beta-galactosidase activity (p < 0.001), and decreased p16 <sup>ink4a</sup> (p < 0.05) and increased Sirtuin-1 (p < 0.05) expressions (Western blot). No effects of R were observed in the CTRL-ECFCs. These results suggest that R reverses long-term ECFC dysfunctions related to IUGR

    Stress-Induced Premature Senescence Related to Oxidative Stress in the Developmental Programming of Nonalcoholic Fatty Liver Disease in a Rat Model of Intrauterine Growth Restriction.

    Get PDF
    Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21 <sup>WAF</sup> , p16 <sup>INK4a</sup> and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders

    Systemic Maternal Inflammation and Neonatal Hyperoxia Induces Remodeling and Left Ventricular Dysfunction in Mice

    Get PDF
    The impact of the neonatal environment on the development of adult cardiovascular disease is poorly understood. Systemic maternal inflammation is linked to growth retardation, preterm birth, and maturation deficits in the developing fetus. Often preterm or small-for-gestational age infants require medical interventions such as oxygen therapy. The long-term pathological consequences of medical interventions on an immature physiology remain unknown. In the present study, we hypothesized that systemic maternal inflammation and neonatal hyperoxia exposure compromise cardiac structure, resulting in LV dysfunction during adulthood.Pregnant C3H/HeN mice were injected on embryonic day 16 (E16) with LPS (80 µg/kg; i.p.) or saline. Offspring were placed in room air (RA) or 85% O(2) for 14 days and subsequently maintained in RA. Cardiac echocardiography, cardiomyocyte contractility, and molecular analyses were performed. Echocardiography revealed persistent lower left ventricular fractional shortening with greater left ventricular end systolic diameter at 8 weeks in LPS/O(2) than in saline/RA mice. Isolated cardiomyocytes from LPS/O(2) mice had slower rates of contraction and relaxation, and a slower return to baseline length than cardiomyocytes isolated from saline/RA controls. α-/β-MHC ratio was increased and Connexin-43 levels decreased in LPS/O(2) mice at 8 weeks. Nox4 was reduced between day 3 and 14 and capillary density was lower at 8 weeks of life in LPS/O(2) mice.These results demonstrate that systemic maternal inflammation combined with neonatal hyperoxia exposure induces alterations in cardiac structure and function leading to cardiac failure in adulthood and supports the importance of the intrauterine and neonatal milieu on adult health

    At the heart of programming: the role of micro-RNAs.

    No full text
    Epidemiological and experimental observations tend to prove that environment, lifestyle or nutritional challenges influence heart functions together with genetic factors. Furthermore, when occurring during sensitive windows of heart development, these environmental challenges can induce an 'altered programming' of heart development and shape the future heart disease risk. In the etiology of heart diseases driven by environmental challenges, epigenetics has been highlighted as an underlying mechanism, constituting a bridge between environment and heart health. In particular, micro-RNAs which are involved in each step of heart development and functions seem to play a crucial role in the unfavorable programming of heart diseases. This review describes the latest advances in micro-RNA research in heart diseases driven by early exposure to challenges and discusses the use of micro-RNAs as potential targets in the reversal of the pathophysiology

    Epigenetics and neonatal nutrition.

    No full text
    Epigenetic changes have long-lasting effects on gene expression and are related to, and often induced by, the environment in which early development takes place. In particular, the period of development that extends from pre-conception to early infancy is the period of life during which epigenetic DNA imprinting activity is the most active. Epigenetic changes have been associated with modification of the risk for developing a wide range of adulthood, non-communicable diseases (including cardiovascular diseases, metabolic diseases, diseases of the reproductive system, etc.). This paper reviews the molecular basis of epigenetics, and addresses the issues related to the process of developmental programming of the various areas of human health

    Intrauterine growth restriction: Clinical consequences on health and disease at adulthood.

    No full text
    Intrauterine growth restriction (IUGR) affects 10-15% of all pregnancies worldwide. IUGR may result from maternal, placental or fetal origin. Maternal malnutrition before and during pregnancy represents the most prevalent non-genetic or placental cause. IUGR reflects an abnormal adaptive fetal growth in a deleterious environment. Individuals born after IUGR are more susceptible to develop diseases related to subsequent stressors through a lifetime. Animal models help to decipher the underlying causes of dysregulated pathways and molecular modifications conditioning health and disease in adult offspring born after IUGR. The aim of this review is to summarize current knowledge on long term consequences of IUGR, integrating animal models and human studies for a better care of IUGR-born individuals in a life course perspective
    corecore