306 research outputs found
Thyroid cancer in a patient with a germline MSH2 mutation. Case report and review of the Lynch syndrome expanding tumour spectrum
Lynch syndrome (HNPCC) is a dominantly inherited disorder characterized by germline defects in DNA mismatch repair (MMR) genes and the development of a variety of cancers, predominantly colorectal and endometrial. We present a 44-year-old woman who was shown to carry the truncating MSH2 gene mutation that had previously been identified in her family. Recently, she had been diagnosed with an undifferentiated carcinoma of the thyroid and an adenoma of her coecum. Although the thyroid carcinoma was not MSI-high (1 out of 5 microsatellites instable), it did show complete loss of immunohistochemical expression for the MSH2 protein, suggesting that this tumour was not coincidental. Although the risks for some tumour types, including breast cancer, soft tissue sarcoma and prostate cancer, are not significantly increased in Lynch syndrome, MMR deficiency in the presence of a corresponding germline defect has been demonstrated in incidental cases of a growing range of tumour types, which is reviewed in this paper. Interestingly, the MSH2-associated tumour spectrum appears to be wider than that of MLH1 and generally the risk for most extra-colonic cancers appears to be higher for MSH2 than for MLH1 mutation carriers. Together with a previously reported case, our findings show that anaplastic thyroid carcinoma can develop in the setting of Lynch syndrome. Uncommon Lynch syndrome-associated tumour types might be useful in the genetic analysis of a Lynch syndrome suspected family if samples from typical Lynch syndrome tumours are unavailable
VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Ă„ resolution and mutational analysis of the interface
AbstractBackground: Vascular endothelial growth factor (VEGF) is a highly specific angiogenic growth factor; anti-angiogenic treatment through inhibition of receptor activation by VEGF might have important therapeutic applications in diseases such as diabetic retinopathy and cancer. A neutralizing anti-VEGF antibody shown to suppress tumor growth in an in vivo murine model has been used as the basis for production of a humanized version.Results: We present the crystal structure of the complex between VEGF and the Fab fragment of this humanized antibody, as well as a comprehensive alanine-scanning analysis of the contact residues on both sides of the interface. Although the VEGF residues critical for antibody binding are distinct from those important for high-affinity receptor binding, they occupy a common region on VEGF, demonstrating that the neutralizing effect of antibody binding results from steric blocking of VEGFâreceptor interactions. Of the residues buried in the VEGFâFab interface, only a small number are critical for high-affinity binding; the essential VEGF residues interact with those of the Fab fragment, generating a remarkable functional complementarity at the interface.Conclusions: Our findings suggest that the character of antigenâantibody interfaces is similar to that of other proteinâprotein interfaces, such as ligandâreceptor interactions; in the case of VEGF, the principal difference is that the residues essential for binding to the Fab fragment are concentrated in one continuous segment of polypeptide chain, whereas those essential for binding to the receptor are distributed over four different segments and span across the dimer interface
Diagnostic yield of targeted next generation sequencing in 2002 Dutch cardiomyopathy patients
BACKGROUND: Next-generation sequencing (NGS) is increasingly used for clinical evaluation of cardiomyopathy patients as it allows for simultaneous screening of multiple cardiomyopathy-associated genes. Adding copy number variant (CNV) analysis of NGS data is not routine yet and may contribute to the diagnostic yield. OBJECTIVES: Determine the diagnostic yield of our targeted NGS gene panel in routine clinical diagnostics of Dutch cardiomyopathy patients and explore the impact of exon CNVs on diagnostic yield. METHODS: Patients (NâŻ=âŻ2002) referred for clinical genetic analysis underwent diagnostic testing of 55-61 genes associated with cardiomyopathies. Samples were analyzed and evaluated for single nucleotide variants (SNVs), indels and CNVs. CNVs identified in the NGS data and suspected of being pathogenic based on type, size and location were confirmed by additional molecular tests. RESULTS: A (likely) pathogenic (L)P variant was detected in 22.7% of patients, including 3 with CNVs and 25 where a variant was identified in a gene currently not associated with the patient's cardiomyopathy subtype. Only 15 out of 2002 patients (0.8%) were found to carry two (L)P variants. CONCLUSION: The yield of routine clinical diagnostics of cardiomyopathies was relatively low when compared to literature. This is likely due to the fact that our study reports the outcome of patients in daily routine diagnostics, therefore also including patients not fully fulfilling (subtype specific) cardiomyopathy criteria. This may also explain why (L)P variants were identified in genes not associated with the reported subtype. The added value of CNV analysis was shown to be limited but not negligible
Fontana: Triggering Physical Activity and Social Connectedness through an Interactive Water Installation
Promoting healthy and active lifestyles is an important objective for many governing agencies. The design of active urban environments can be an effective tool to encourage more active behaviors and water features can attract people, improving their experience of the urban space. To explore the potential of these concepts, we designed Fontana; an interactive public installation that aims to stimulate physical activity and social connectedness in the urban outdoor space, using the multidimensional attractiveness of water. We focus on the use of embedded interactive technology to promote physical activity, using water as a linking element between users. Adopting a research-through-design approach, we explored how such installations can nudge people into an active behavior while additionally strengthening social connectedness, using inclusive design principles. We report on insights gathered through this case study and findings of a preliminary user test, discussing the implications of this work for design researchers and practitioners
Validation of New Gene Variant Classification Methods:a Field-Test in Diagnostic Cardiogenetics
Background: In the molecular genetic diagnostics of Mendelian disorders, solutions are needed for the major challenge of dealing with the large number of variants of uncertain significance (VUSs) identified using next-generation sequencing (NGS). Recently, promising approaches using constraint metrics to calculate case excess scores (CE), etiological fractions (EF), and gnomAD-derived constraint scores have been reported that estimate the likelihood of rare variants in specific genes or regions that are pathogenic. Our objective is to study the usability of these constraint data into variant interpretation in a diagnostic setting, using our cardiomyopathy cohort. Methods and Results: Patients (N = 2002) referred for clinical genetic diagnostics underwent NGS testing of 55â61 genes associated with cardiomyopathies. Previously classified likely pathogenic (LP) and pathogenic (P) variants were used to validate the use of data from CE, EF, and gnomAD constraint analyses for (re)classification of associated variant types in specific cardiomyopathy subtype-related genes. The classifications corroborated in 94% (354/378) of cases. Next, we reclassified 23 unique VUSs to LP, increasing the diagnostic yield by 1.2%. In addition, 106 unique VUSs (5.3% of patients) were prioritized for co-segregation or functional analyses. Conclusions: Our analysis confirms that the use of constraint metrics data can improve variant interpretation, and we, therefore, recommend using constraint scores on other cohorts and disorders and its inclusion in variant interpretation protocols
Screening for germline DND1 mutations in testicular cancer patients
Although several observations suggest that a strong genetic predisposition to developing testicular germ cell tumors (TGCT) exists, no associated, highly penetrant germline mutations have been identified so far. In the 129/Sv mouse strain, a germline mutation in the DND1 gene has been shown to strongly increase the TGCT risk. We screened 272 men with TGCT (89% sporadic cases, 11% familial) for germline mutations in the human homologue of DND1. A single nucleotide substitution c.657CÂ >Â G (p.Asp219Glu) was observed in a non-familial case of testicular embryonal carcinoma. The variant was also present in the patientâs asymptomatic father and two brothers, but not observed in 210 control chromosomes. The wild type DND1 allele was not lost in the patientâs tumor. In silico analysis of the variant predicts it to be non-pathogenic. We conclude that germline DND1 mutations are unlikely to contribute significantly to human testicular germ cell tumor susceptibility. The role of human DND1 in normal physiology and disease, however, is still virtually unknown and it therefore warrants further research
- âŠ