97 research outputs found

    Coral resistance to natural and anthropogenic disturbances

    Get PDF
    The effects of natural (upwelling, tsunami) and human induced (eutrophication, overfishing, bomb fishing) disturbances to corals were investigated in highly diverse reefs of SE Asia. Firstly, coral recruitment patterns and their contribution to reef recovery and secondly, the corals metabolic flexibility in various environments were investigated. In addition, the bacterial community structure in biofilms was assessed in relation to environmental changes. In summary, the investigated coral reefs seem to be very dynamic visible in recruitment patterns and bacterial community structure being highly responsive to seasonal changes and being able to support reef recovery in most cases. The widely distributed coral species P. lutea and S. subseriata feature a highly flexible metabolism allowing their distribution even to environmental extremes. However, these corals belong to the minority as indicated by the loss of coral diversity in strongly polluted reefs, but it also shows a high interspecific variability, which provides high diversity reefs with a certain buffer capacity to environmental changes

    Calcification, photosynthesis and nutritional status of the hermatypic coral Porites lutea: contrasting case studies from Indonesia and Thailand

    Get PDF
    In situ incubation experiments, complemented by tissue analyses, were conducted with the coral Porites lutea at four sites featuring contrasting environmental conditions: two shallow (3m) reefs in Spermonde Archi-pelago (Indonesia) subjected to coastal pollution (Lae Lae, LL) and oligotrophic waters (Bonebatang, BBA), respectively; a deep (20m, KR-D) and a shallow (7m, KR-S) reef at off-shore Ko Racha (KR) in the Andaman Sea (Thailand) subjected to pulsed upwelling. Mean tem-perature varied only little (29-30°C). While most tis-sue parameters responded to light and nutrient changes as ex-pected, metabolic rates revealed surprising patterns: 3-fold elevated calcification occurred at KR-S compared to all other sites despite reduced gross photosynthesis. Fur-ther-more, equal photosynthesis occurred in 7 and 20m depth at KR, despite a 5-fold reduction in light intensity, which could not be solely ascribed to photo-acclimation processes, such as increased cell-specific chlorophyll a in 20m depth. These findings support the notion of a highly flexible species and indicate that this might partly be ascribed to a strong variation in the internal turnover of oxygen and nutrients between coral host and zooxanthellae, meaning a strong variation in the rates of energy ac-quisition. Those differences are particularly difficult to determine in situ, but require greater attention in the future in order to enhance our understanding of metabolic pro-cesses and acclimatization abilities

    Discrete Pulses of Cooler Deep Water Can Decelerate Coral Bleaching During Thermal Stress: Implications for Artificial Upwelling During Heat Stress Events

    Get PDF
    Global warming is considered to be the most severe threat to coral reefs globally, which makes it important for scientists to develop novel strategies that mitigate the impact of warming on corals and associated habitats. Artificial upwelling of cooler deep water to the surface layer may be a possible mitigation/management tool. In this study, we investigated the effect of simulated artificial upwelling with deep water off Bermuda collected at 50 m (24°C) and 100 m (20°C) on coral symbiont biology of 3 coral species (Montastrea cavernosa, Porites astreoides, and Pseudodiploria strigosa) in a temperature stress experiment. The following treatments were applied over a period of 3 weeks: (i) control at 28°C (ii) heat at 31°C, (iii) heat at 31°C+ deep water from 50 m depth, and (iv) heat at 31°C+ deep water from 100 m depth. Artificial upwelling was simulated over a period of 25 min on a daily basis resulting in a reduction of temperature for 2 h per day and the following degree-heating-weeks: 5.7°C-weeks for ii, 4.6°C-weeks for iii and 4.2°C-weeks for iv. Comparative analysis of photosynthetic rate, chlorophyll-a concentration and zooxanthellae density revealed a reduction of heat stress responses in artificial upwelling treatments in 2 of the 3 investigated species, and a stronger positive effect of 100-m water than 50-m water. These results indicate that artificial upwelling could be an effective strategy to mitigate coral bleaching during heat stress events allowing corals to adjust to increasing temperatures more gradually. It will still be necessary to further explore the ecological benefits as well as potential ecosystem impacts associated with different artificial upwelling scenarios to carefully implement an effective in situ artificial upwelling strategy in coral reefs

    Modeling coral bleaching mitigation potential of water vertical translocation – an analogue to geoengineered artificial upwelling

    Get PDF
    Artificial upwelling (AU) is a novel geoengineering technology that brings seawater from the deep ocean to the surface. Within the context of global warming, AU techniques are proposed to reduce sea surface temperature at times of thermal stress around coral reefs. A computationally fast but coarse 3D Earth System model (3.6° longitude × 1.8° latitude) was used to investigate the environmental impacts of hypothetically implemented AU strategies in the Great Barrier Reef, South China Sea, and Hawaiian regions. While omitting the discussion on sub-grid hydrology, we simulated in our model a water translocation from either 130 or 550 m depth to sea surface at rates of 1 or 50 m3 s−1 as analogues to AU implementation. Under the Representative Concentration Pathway 8.5 emissions scenario from year 2020 on, the model predicted a prevention of coral bleaching until the year 2099 when AU was implemented, except under the least intense AU scenario (water from 130 m depth at 1 m3 s−1). Yet, intense AU implementation (water from 550 m depth at 50 m3 s-1) will likely have adverse effects on coral reefs by overcooling the surface water, altering salinity, decreasing calcium carbonate saturation, and considerably increasing nutrient levels. Our result suggests that if we utilize AU for mitigating coral bleaching during heat stress, AU implementation needs to be carefully designed with respect to AU’s location, depth, intensity and duration so that undesirable environmental effects are minimized. Following a proper installation and management procedure, however, AU has the potential to decelerate destructive bleaching events and buy corals more time to adjust to climate change

    Spatio-Temporal Analyses of Symbiodinium Physiology of the Coral Pocillopora verrucosa along Large-Scale Nutrient and Temperature Gradients in the Red Sea

    Get PDF
    Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication

    Large scale patterns of antimicrofouling defenses in the hard coral Pocillopora verrucosa in an environmental gradient along the Saudi Arabian coast of the Red Sea

    Get PDF
    Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus releas

    Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming

    Get PDF
    Global warming was reported to cause growth reductions in tropical shallow water corals in both, cooler and warmer, regions of the coral species range. This suggests regional adaptation with less heat-tolerant populations in cooler and more thermo-tolerant populations in warmer regions. Here, we investigated seasonal changes in the in situ metabolic performance of the widely distributed hermatypic coral Pocillopora verrucosa along 12 degrees latitudes featuring a steep temperature gradient between the northern (28.5 degrees N, 21-27 degrees C) and southern (16.5 degrees N, 28-33 degrees C) reaches of the Red Sea. Surprisingly, we found little indication for regional adaptation, but strong indications for high phenotypic plasticity: Calcification rates in two seasons (winter, summer) were found to be highest at 28-29 degrees C throughout all populations independent of their geographic location. Mucus release increased with temperature and nutrient supply, both being highest in the south. Genetic characterization of the coral host revealed low inter-regional variation and differences in the Symbiodinium clade composition only at the most northern and most southern region. This suggests variable acclimatization potential to ocean warming of coral populations across the Red Sea: high acclimatization potential in northern populations, but limited ability to cope with ocean warming in southern populations already existing at the upper thermal margin for coral

    Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations

    Get PDF
    Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress

    Disparate Population and Holobiont Structure of Pocilloporid Corals Across the Red Sea Gradient Demonstrate Species-Specific Evolutionary Trajectories

    Get PDF
    Global habitat degradation heightens the need to better understand patterns of genetic connectivity and diversity of marine biota across geographical ranges to guide conservation efforts. Corals across the Red Sea are subject to pronounced environmental differences, but studies so far suggest that animal populations are largely connected, excepting evidence for a genetic break between the northern-central and southern regions. Here, we investigated population structure and holobiont assemblage of two common pocilloporid corals, Pocillopora verrucosa and Stylophora pistillata, across the Red Sea. We found little evidence for population differentiation in P. verrucosa, except for the southernmost site. Conversely, S. pistillata exhibited a complex population structure with evidence for within-reef and regional genetic differentiation, in line with differences in their reproductive mode (P. verrucosa is a broadcast spawner and S. pistillata is a brooder). Analysis for genomic loci under positive selection identified 85 sites (18 of which were in coding sequences) that distinguished the southern P. verrucosa population from the remainder of the Red Sea population. By comparison, we found 128 loci (24 of which were residing in coding sequences) in S. pistillata with evidence for local adaptation at various sites. Functional annotation of the underlying proteins revealed putative roles in the response to stress, lipid metabolism, transport, cytoskeletal rearrangement, and ciliary function (among others). Microbial assemblages of both coral species showed pervasive association with microalgal symbionts from the genus Symbiodinium (former clade A) and bacteria from the genus Endozoicomonas that exhibited significant differences according to host genotype and environment. The disparity of population genetic and holobiont assemblage patterns even between closely related species (family Pocilloporidae) highlights the need for multispecies investigations to better understand the role of the environment in shaping evolutionary trajectories. It further emphasizes the importance of networks of reef reserves to achieve conservation of genetic variants critical to the future survival of coral ecosystems

    Coral Communities, in Contrast to Fish Communities, Maintain a High Assembly Similarity along the Large Latitudinal Gradient along the Saudi Red Sea Coast

    Get PDF
    The Saudi Arabian Red Sea coast is characterized by a strong environmental gradient from north (28.5°N) to south (16.5°N) with challenging conditions for coral growth particularly in the south (high temperature and nutrient input). We investigated whether assemblies of reef-building corals and the distribution of functional groups follow a latitudinal pattern in the Red Sea, and whether these changes affect the assembly structure of coral associated organisms (e.g. fishes). Functional groups were defined based on life-history traits and functional role. 13 reefs along the north-south gradient, including 5 potentially polluted reefs were investigated. Results showed a substantially weaker latitudinal shift in the assembly structure of coral communities than of fishes communities and of other benthic reef taxa. Competitive fast growing branching and tabular species (mainly Acropora), as well as rather stresstolerant slow growing bulky species (e.g. Porites, Goniastrea, Favites, Favia) were fairly evenly distributed along the north-south axis despite strong changes of environmental conditions. This seems on the one hand attributable to the high species richness within a given functional group (functional redundancy) and on the other hand to a high acclimatization / adaptation potential of some Red Sea coral species. The prime ecosystem service of the coral community, the provision of a habitat complex, is thereby maintained throughout the gradient. In contrast to the coral community, the assembly of the fish community shifts along the environmental gradient with higher abundances of small wrasses and butterfly fishes in the north, and overall higher abundance of fishes including large fishes in the south. This shift seems linked to higher food availability in the south. Altered assembly structures of coral communities were found in reefs close to a source of pollution with either an increased relative abundance of stresstolerant species or a general decrease of coral abundance, latter case accompanied by a substantial reduction in fish abundance
    • …
    corecore