29 research outputs found

    Polygenic architecture informs potential vulnerability to drug-induced liver injury

    Get PDF
    Drug-Induced-Liver-Injury (DILI) is a leading cause of termination in drug development programs and removal of drugs from the market, and this is partially due to the inability to identify patients who are at risk1. Here, we developed a polygenic risk score (PRS) for DILI by aggregating effects of numerous genome-wide loci identified from previous large-scale genome-wide association studies (GWAS)2. The PRS predicted the susceptibility to DILI in patients treated with fasiglifam, amoxicillin-clavulanate or flucloxacillin, and in primary hepatocytes and stem cell-derived organoids from multiple donors treated with over 10 different drugs. Pathway analysis highlighted processes previously implicated in DILI, including unfolded protein responses and oxidative stress. In silico screening identified compounds that elicit transcriptomic signatures present in hepatocytes from individuals with elevated PRS, supporting mechanistic links and suggesting a novel screen for safety of new drug candidates. This genetic-, cellular-, organoid- and human-scale evidence underscored the polygenic architecture underlying DILI vulnerability at the level of hepatocytes, thus facilitating future mechanistic studies. Moreover, the proposed “polygenicity-in-a-dish” strategy might potentially inform designs of safer, more efficient, and robust clinical trials

    Differential gene expression in mouse primary hepatocytes exposed to the peroxisome proliferator-activated receptor α agonists

    Get PDF
    BACKGROUND: Fibrates are a unique hypolipidemic drugs that lower plasma triglyceride and cholesterol levels through their action as peroxisome proliferator-activated receptor alpha (PPARα) agonists. The activation of PPARα leads to a cascade of events that result in the pharmacological (hypolipidemic) and adverse (carcinogenic) effects in rodent liver. RESULTS: To understand the molecular mechanisms responsible for the pleiotropic effects of PPARα agonists, we treated mouse primary hepatocytes with three PPARα agonists (bezafibrate, fenofibrate, and WY-14,643) at multiple concentrations (0, 10, 30, and 100 μM) for 24 hours. When primary hepatocytes were exposed to these agents, transactivation of PPARα was elevated as measured by luciferase assay. Global gene expression profiles in response to PPARα agonists were obtained by microarray analysis. Among differentially expressed genes (DEGs), there were 4, 8, and 21 genes commonly regulated by bezafibrate, fenofibrate, and WY-14,643 treatments across 3 doses, respectively, in a dose-dependent manner. Treatments with 100 μM of bezafibrate, fenofibrate, and WY-14,643 resulted in 151, 149, and 145 genes altered, respectively. Among them, 121 genes were commonly regulated by at least two drugs. Many genes are involved in fatty acid metabolism including oxidative reaction. Some of the gene changes were associated with production of reactive oxygen species, cell proliferation of peroxisomes, and hepatic disorders. In addition, 11 genes related to the development of liver cancer were observed. CONCLUSION: Our results suggest that treatment of PPARα agonists results in the production of oxidative stress and increased peroxisome proliferation, thus providing a better understanding of mechanisms underlying PPARα agonist-induced hepatic disorders and hepatocarcinomas

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Mode of Action in Relevance of Rodent Liver Tumors to Human Cancer Risk

    Get PDF
    Hazard identification and risk assessment paradigms depend on the presumption of the similarity of rodents to humans, yet species specific responses, and the extrapolation of high-dose effects to lowdose exposures can affect the estimation of human risk from rodent data. As a consequence, a human relevance framework concept was developed by the International Programme on Chemical Safety (IPCS) and International Life Sciences Institute (ILSI) Risk Science Institute (RSI) with the central tenet being the identification of a mode of action (MOA). To perform a MOA analysis, the key biochemical, cellular, and molecular events need to first be established, and the temporal and dose-dependent concordance of each of the key events in the MOA can then be determined. The key events can be used to bridge species and dose for a given MOA. The next step in the MOA analysis is the assessment of biological plausibility for determining the relevance of the specified MOA in an animal model for human cancer risk based on kinetic and dynamic parameters. Using the framework approach, a MOA in animals could not be defined for metal overload. The MOA for phenobarbital (PB)-like P450 inducers was determined to be unlikely in humans after kinetic and dynamic factors were considered. In contrast, after these factors were considered with reference to estrogen, the conclusion was drawn that estrogen-induced tumors were plausible in humans. Finally, it was concluded that the induction of rodent liver tumors by porphyrogenic compounds followed a cytotoxic MOA, and that liver tumors formed as a result of sustained cytotoxicity and regenerative proliferation are considered relevant for evaluating human cancer risk if appropriate metabolism occurs in the animal models and in humans
    corecore